
Data Control Tower Home
Data Control Tower

Exported on 08/15/2023

Data Control Tower – Data Control Tower Home

 – 2

Table of Contents

1 What is Data Control Tower (DCT)? ..10

2 Release notes ..11
2.1 New features .. 11
2.1.1 Release 8.0.0... 11

2.1.2 Release 7.0.0... 11

2.1.3 Release 6.0.0... 11

2.1.4 Release 5.0.1... 12

2.1.4.1 Enhancements ... 12

2.1.4.2 Custom Roles.. 13

2.1.5 Release 4.0.. 14

2.1.6 Release 3.0.. 14

2.1.7 Release 2.2.. 14

2.1.7.1 Deployment.. 14

2.1.7.2 APIs ... 14

2.1.7.3 UI... 14

2.2 Fixed issues... 15
2.2.1 Release 8.0.1 changes .. 15

2.2.2 Release 8.0.0 changes .. 15

2.2.3 Release 7.0.1 changes .. 16

2.2.4 Release 6.0.1 changes .. 16

2.2.5 Release 6.0.0 changes .. 16

2.2.6 Release 5.0.3 changes .. 16

2.2.7 Release 5.0.2 changes .. 17

2.2.8 Release 5.0.1 changes .. 17

2.2.9 Release 3.0.0 changes .. 17

3 DCT concepts ..18
3.1 Introduction ... 18

3.2 Concepts... 18
3.2.1 Virtual Database (VDB) groups .. 18

3.2.2 Comparing Self-Service containers to VDB groups .. 19

3.2.3 Bookmarks ... 20

3.2.4 Jobs .. 20

Data Control Tower – Data Control Tower Home

 – 3

3.2.5 Tags... 20

3.2.6 Tag-based filtering ... 21

3.3 Nuances .. 21
3.3.1 Stateful APIs ... 21

3.3.2 Local data availability.. 21

3.3.3 Engine-to-DCT API mapping .. 22

3.3.4 Local references to global UUIDs .. 22

3.3.5 Environment representations ... 22

3.3.6 Supported data sources/configurations... 22

3.3.7 Process feedback ... 22

4 Deployment...23
4.1 Password policy default enablement ... 24

4.2 Supported engine versions.. 25

4.3 Kubernetes ... 25
4.3.1 Installation and setup for Kubernetes .. 25

4.3.1.1 Hardware requirements .. 25

4.3.1.2 Installation requirements (Kubernetes) ... 26

4.3.1.3 Installing DCT ... 26

4.3.2 DCT logs for Kubernetes .. 28

4.3.3 Admin topics for Kubernetes... 28

4.3.3.1 Deployment upgrade for Kubernetes ... 28

4.3.3.2 Factory reset DCT for Kubernetes ... 30

4.4 OpenShift.. 30
4.4.1 Installation and setup for OpenShift... 30

4.4.1.1 Hardware requirements .. 30

4.4.1.2 Installation requirements (OpenShift).. 30

4.4.1.3 Installation process.. 31

4.4.1.4 Configure Ingress ... 34

4.4.2 OpenShift authentication .. 36

4.4.2.1 Introduction ... 36

4.4.2.2 Enable OAuth2 authentication.. 36

4.4.3 DCT logs for OpenShift... 37

4.4.4 Admin topics for OpenShift ... 37

4.4.4.1 Deployment upgrade for OpenShift.. 37

Data Control Tower – Data Control Tower Home

 – 4

4.4.4.2 Factory reset DCT for OpenShift.. 39

4.5 Docker Compose .. 39
4.5.1 Installation and setup for Docker Compose ... 39

4.5.1.1 Hardware requirements .. 39

4.5.1.2 Installation requirements (Docker Compose) .. 39

4.5.1.3 Unpack and install DCT.. 40

4.5.1.4 Run DCT .. 41

4.5.2 Bootstrapping API Keys ... 41

4.5.3 Custom configuration .. 42

4.5.3.1 Introduction ... 42

4.5.3.2 Bind mounts ... 42

4.5.4 Docker logs ... 44

4.5.5 Migration topics ... 44

4.5.5.1 Migrate to Kubernetes ... 44

4.5.5.2 Migrate to OpenShift.. 47

4.5.6 Admin topics for Docker Compose.. 49

4.5.6.1 Backup DCT on Docker Compose.. 49

4.5.6.2 Deployment upgrade for Docker Compose .. 50

4.5.6.3 Factory reset DCT for Docker Compose .. 51

4.6 Engines: connecting/authenticating... 52
4.6.1 Introduction ... 52

4.6.2 Truststore for HTTPS ... 52

4.6.3 Authentication with engine ... 52

4.6.4 HashiCorp vault.. 52

4.6.4.1 Vault authentication and registration... 53

4.6.4.2 Token .. 53

4.6.4.3 AppRole .. 54

4.6.5 TLS certificates... 54

4.6.5.1 Retrieving engine credentials.. 54

4.7 Accounts: connecting/authenticating .. 55
4.7.1 API keys... 55

4.7.1.1 API keys... 55

4.7.2 Username/password.. 57

4.7.2.1 Password policies .. 58

4.7.2.2 Understanding password policies... 58

Data Control Tower – Data Control Tower Home

 – 5

4.7.2.3 Default password policy .. 59

4.7.2.4 Changing the password policy .. 59

4.7.2.5 Disabling local username/password authentication ... 59

4.7.3 LDAP/Active Directory.. 60

4.7.3.1 Configuration ... 60

4.7.4 SAML/SSO ... 64

4.7.4.1 Identity provider setup .. 64

4.7.4.2 DCT SAML/SSO setup ... 65

4.7.4.3 Login ... 66

4.7.4.4 Troubleshooting... 66

4.8 Configure LDAP/Active Directory groups .. 67
4.8.1 Active Directory example... 68

4.8.2 Attributes mapping .. 69

4.9 Replace HTTPS certificate for DCT .. 71

4.10 External database support .. 72
4.10.1 Overview... 72

4.10.2 Requirements... 72

4.10.3 Setup... 72

4.10.3.1 PostgreSQL database setup .. 72

4.10.3.2 DCT setup ... 73

4.10.4 Backup and recovery ... 73

4.10.5 External database migration or upgrade.. 74

4.10.6 DCT upgrade... 74

4.11 DCT data backup and recovery ... 75
4.11.1 Data backup of Persistent Volumes used by DCT... 75

4.11.2 Restore data backup in a new DCT setup ... 75

4.12 Exporting DCT logs to Splunk.. 77
4.12.1 Overview... 77

4.12.2 Setting up a Splunk instance... 77

4.12.3 Enable Splunk log forwarding ... 77

4.12.4 Search for events in Splunk ... 78

4.13 Generating a support bundle .. 80
4.13.1 Find the “collect_bundle.sh” script .. 80

4.13.2 Execute the “collect_bundle.sh” script when DCT is running in Kubernetes ... 81

Data Control Tower – Data Control Tower Home

 – 6

4.13.3 Execute the “collect_bundle.sh” script when DCT is running in Docker-Compose ... 81

4.13.4 Find the generated support bundle tar file .. 81

5 Data governance ...83
5.1 DCT administration.. 83
5.1.1 Tags... 83

5.1.1.1 Tags management ... 83

5.1.1.2 Administrative tagging .. 83

5.1.1.3 Tags powering attribute-based Access Control ... 85

5.1.2 Authentication ... 85

5.1.3 Access groups... 86

5.1.3.1 Access Group structure.. 86

5.1.3.2 Accounts ... 87

5.1.3.3 Roles ... 87

5.1.3.4 Example configuration scenario ... 90

5.1.3.5 User interface ... 93

5.1.3.6 Advanced scope type ... 94

5.1.4 VDB templates.. 95

5.1.4.1 Creating templates .. 96

5.1.4.2 Importing templates .. 96

5.1.4.3 Using templates ... 97

5.1.5 API metering ... 98

5.1.5.1 API metering instructions .. 98

5.1.6 Client telemetry.. 98

5.2 Central governance workflows.. 99
5.2.1 Managing engines (Continuous Data) ... 100

5.2.1.1 Infrastructure ... 100

5.2.1.2 Engine Overview... 100

5.2.1.3 Engine-connected Environments.. 101

5.2.1.4 Local dSources ... 101

5.2.1.5 Local VDBs .. 102

5.2.1.6 Engine-based Operations Access .. 102

5.2.2 Managing dSources.. 102

5.2.2.1 Managing dSources.. 102

5.2.2.2 dSource overview... 103

5.2.2.3 Timeflow visibility .. 103

Data Control Tower – Data Control Tower Home

 – 7

5.2.2.4 Access auditing .. 104

5.2.3 Managing VDBs... 104

5.2.3.1 VDB overview.. 104

5.2.3.2 VDB active timeline .. 105

5.2.3.3 VDB timeline history .. 105

5.2.3.4 VDB bookmarks.. 106

5.2.3.5 VDB access.. 106

5.2.3.6 VDB templates.. 106

5.2.4 Managing environments (Continuous Data)... 108

5.2.4.1 Global environments list.. 108

5.2.4.2 Manage environments ... 108

5.2.4.3 Edit host details.. 109

5.2.5 Managing bookmarks .. 109

5.2.5.1 Global Bookmarks List... 109

5.2.6 Insights ... 110

5.2.6.1 Central governance insights.. 110

5.2.6.2 Global storage summary ... 110

5.2.6.3 VDB inventory report ... 110

5.2.6.4 dSource inventory report .. 111

5.2.6.5 Consumption Metrics... 111

6 Continuous Data workflows ...113
6.1 DevOps TDM ... 113

6.2 Developer experience .. 114

6.3 Self-service vs. DCT developer experience ... 114
6.3.1 Key similarities ... 114

6.3.2 Key differences... 115

6.4 Creating and managing bookmarks.. 116
6.4.1 Create new Bookmark ... 116

6.4.2 Bookmark API Documentation.. 117

6.4.3 Create a Bookmark at the current time for multiple VDBs .. 118

6.4.4 Create a Bookmark for a VDB from an existing Snapshot.. 119

6.4.5 Create a Bookmark for a VDB from an existing Snapshot.. 119

6.5 VDB operations... 120
6.5.1 VDB provision UI... 121

Data Control Tower – Data Control Tower Home

 – 8

6.5.2 VDB refresh UI... 122

6.5.2.1 Overview... 122

6.5.2.2 User interface ... 123

6.5.3 Active timelines UI ... 126

6.5.3.1 Active Timeline View .. 126

6.5.3.2 Additional notes... 127

6.5.4 Timeline history UI ... 127

6.5.4.1 Timeline History view .. 127

6.5.4.2 The Timeline History user interface .. 127

6.5.4.3 Non-active timelines.. 128

6.5.4.4 Time concepts within the Timeline History Tab... 129

6.5.4.5 Timeflow operations.. 129

6.5.4.6 API documentation .. 131

7 Continuous Compliance workflows ...133
7.1 Listing and searching compliance jobs... 133

7.2 Consolidated operations (intelligent syncing) ... 134

7.3 Managing engines (Continuous Compliance)... 134
7.3.1 Engine overview ... 135

7.3.2 Engine-based operations access... 135

7.4 Compliance jobs... 136
7.4.1 Job UI.. 136

7.4.1.1 Global compliance jobs list ... 136

7.4.1.2 Compliance job overview .. 136

7.4.1.3 Compliance job access tab .. 137

7.4.1.4 Compliance job execution history tab .. 137

7.4.1.5 Compliance job execution details... 138

7.4.1.6 Operations.. 139

7.4.2 Copy job.. 141

7.4.2.1 User interface documentation .. 141

7.4.2.2 API documentation .. 142

7.4.3 Execute job ... 143

7.4.3.1 User interface ... 145

7.4.4 Migrate job.. 145

7.4.5 Delete job ... 146

Data Control Tower – Data Control Tower Home

 – 9

8 Integrations ...148

9 Developer resources ...149
9.1 API requests and reporting.. 149
9.1.1 Introduction ... 149

9.1.2 Engines ... 149

9.2 API references... 150

Data Control Tower – Data Control Tower Home

What is Data Control Tower (DCT)? – 10

1 What is Data Control Tower (DCT)?
Today’s application and data landscape is an increasingly complex ecosystem of hosting architectures, often
represented by a multi-cloud landscape coupled with an explosion of different platforms and services. This
fragmented picture of heterogeneous silos makes data governance, automation, and compliance a herculean, if
not, an impossible task.

Data Control Tower (DCT) is an enabling Delphix platform that introduces a data mesh to unify data governance,
automation, and compliance across all applications and cloud platforms.

Data governance is achieved through operational control and visibility of test data across multicloud applications,
databases, environments, and releases. DCT brings data cataloging, tagging, and data access controls for central
governance of all enterprise data, while providing the right data at the right time to development teams.

Data automation at CI/CD speed and enterprise scale is easier and more powerful, by combining DCT with
Continuous Data. A unified API gateway, self-service automation tools, and plug-and-play DevOps integrations
streamline the initial configuration and day-to-day workflows.

DCT with Continuous Compliance provides robust data compliance in lower environments, all while reducing
costs and enabling fast, quality software development.

Data Control Tower – Data Control Tower Home

Release notes – 11

•

•

•

•

•

•

•

•

•

•

2 Release notes
This section is used to learn what the newest version of Data Control Tower has to offer. In addition, the fixed and
known issues per version are detailed.

2.1 New features

2.1.1 Release 8.0.0
Operations dashboard
Monitor and manage enterprise data activities in real time using a new central view. This provides visibility
to the current status across the full complement of Delphix transactions, including provision, refresh,
teardown, and compliance jobs.
Provisioning wizard enhancements
The data provisioning wizard has been expanded to support additional types, including Oracle Single
Instance Linked CDBs and Microsoft SQL Server Single Instance workflows. This will now allow you to
provision more data types directly from Data Control Tower.
Advanced search tags support
The advanced search capabilities now support all user-generated tags. You can use personalized tags
related to your unique business needs to refine your search results, such as team names or other specific
data points.

2.1.2 Release 7.0.0
Provision VDB UI
Extending the Developer Experience capability in DCT, users can now provision single-tenant Oracle
databases from the user interface using an intuitive wizard workflow.
Refresh VDB UI enhancements
The VDB list can now be opened in a searchable, paginated list selector from within a dialog by clicking
the select button in the input. Additionally, refreshing a VDB by a bookmark is now available.
VDB template import
Importing and removing imported VDB templates from connected engines is now an available action from
the "VDB Config Templates" page.
Environment details enhancements
Managing cluster environment infrastructure has been made easier with the ability to edit host details
directly from the page.

2.1.3 Release 6.0.0
Developer Self-Service UI
Developers and admins now have the ability to centrally orchestrate common Continuous Data and
developer operations from the DCT UI. This includes the ability to refresh, rewind, bookmark, and bookmark
share (refresh to relative). This functionality also exposes the notion of time flows (non-active timelines),
which is a critical tool for viewing past work on a VDB, such as the chronology of test results.
Central Compliance Orchestration
The compliance job UI now enables job orchestration and reporting. This includes Job Copy and Execute
functions as well as a complete historical job execution log within each compliance job’s details view.
Bookmark UI
Developers and admins now have added visibility of bookmarks, both globally and contextualized, to

Data Control Tower – Data Control Tower Home

Release notes – 12

•

•

•

•

•

•

•
•

•

•

•
•

•

•

individual VDBs. These visualizations are dual purpose; for administrators, these screens help with reporting
and tagging on bookmarks, while for developers, these screens act as a catalog of actionable data
references.
Global Bookmark List
View all bookmarks across your entire connected Delphix ecosystem. This screen will show bookmarks for
both single VDBs and VDB groups.
VDB Bookmark List
See all bookmarks tied to this individual VDB. This is helpful for sharing bookmarks with team members who
have a compatible VDB (same parent and provision point).
Environment Detail Page
Users can now orchestrate common environment actions via the DCT UI including enable, disable,
environment refresh, and delete, as well as editing host details. Note, editing host details is only applicable
to standalone environments at this time.
Access Visibility
Object detail pages will include an access tab that provides visibility to user access and the associated
permissions for each user. This is a critical enabler for permissions visibility and auditing.
Copy/delete functionality on role scopes
Scoped roles can now be copied and deleted within the DCT UI. This will enable easier administration,
especially around the use of custom roles, as admins can now copy and modify new roles from templates.
External Postgres DB support
DCT now supports the use of an external Postgres database to house DCT metadata. Previously, DCT
supplied and managed its own database, requiring persistent storage within the container platform.

2.1.4 Release 5.0.1

2.1.4.1 Enhancements
Data scoped Access Group

Enhancement in Roles
Associated permissions in roles are changed from 'string' type to 'permission object' type. For details,
see the Role schema in the API References(see page 150).
Custom Roles
In addition to the 5 pre-seeded fixed roles (Admin, Monitoring, DevOps, Masking, and Owner), DCT
provides flexibility to create new custom roles as per user need. Users (Accounts) can create new
custom roles by encapsulating any combination of permissions. The custom roles can be configured
through a UI configuration screen (screenshot below), in addition to a set of APIs to manage roles. For
details, see the API References(see page 150).

Updates to existing RBAC model
For better usability and allow to set more granular permissions there are following enhancements in the
RBAC model:

Renamed Access Group "Policy" to Access Group "Scope"
Renamed the following APIs related to Access Group actions

Add scope to an Access Group
POST: /access-groups/{accessGroupId}/policies → POST /access-
groups/{accessGroupId}/scopes
Remove scope from Access Group
DELETE /access-groups/{accessGroupId}/policies/{policyId} →
 DELETE /access-groups/{accessGroupId}/scopes/{scopeId}

Data Control Tower – Data Control Tower Home

Release notes – 13

•

•

•

•

•

•

•

•

•
•

•
•
•

•
•
•
•

Get Access Group scope
GET /access-groups/{accessGroupId}/policies/{policyId} → GET /
access-groups/{accessGroupId}/scopes/{scopeId}
Update Access Group scope
PATCH /access-groups/{accessGroupId}/policies/{policyId} →
 PATCH /access-groups/{accessGroupId}/scopes/{scopeId}
Add object tags to Access Group scope
POST /access-groups/{accessGroupId}/policies/{policyId}/object-

tags → POST /access-groups/{accessGroupId}/scopes/{scopeId}/
object-tags
Remove object tags from Access Group scope
POST /access-groups/{accessGroupId}/policies/{policyId}/object-

tags/delete → POST /access-groups/{accessGroupId}/scopes/
{scopeId}/object-tags/delete
Add objects to Access Group scope
POST /access-groups/{accessGroupId}/policies/{policyId}/objects

→ POST /access-groups/{accessGroupId}/scopes/{scopeId}/objects
Remove objects from Access Groups scope
POST /access-groups/{accessGroupId}/policies/{policyId}/objects/

delete → POST /access-groups/{accessGroupId}/scopes/{scopeId}/
objects/delete

Renamed the "everything" flag to "scope_type"
In order to make it more understandable, we have renamed the everything flag to scope_type. There
are three possible values for scope_type i.e. SIMPLE, SCOPED and ADVANCED. The value SIMPLE
corresponds to everything=true and SCOPED corresponds to everything=false. The value ADVANCED
for scope_type is new enhancement to setting permissions which allows users to set permissions
(e.g. READ, DELETE) for an object. There is more information about ADVANCED scope in next section.
Access Group Scope: Advanced scope type
In Add objects to access group scope API, now user can define permissions level checks as well for an
object. For example, earlier when object_id and and object_type are provided in request payload, all
permissions that are defined in scope are applied to this object. But now user can define specific
permissions.

Masking Jobs
CRUD APIs, COPY, Connectors CRUD

Masking Job Execution
Connector Credentials
Execution API

2.1.4.2 Custom Roles
Accounts can create new instances of role encapsulating any combination of permission.
Role name must be unique.
Custom roles can be updated. Accounts can add or remove permissions to/from the custom roles.
Custom roles can be deleted. (If they are not associated with any Access Group).

Data Control Tower – Data Control Tower Home

Release notes – 14

•
•
•
•
•

•
•
•
•
•
•
•
•

•

•
•
•
•
•
•
•
•

•
•

•
•
•
•

•
•
•

2.1.5 Release 4.0
Environment Overview List
Un-virtualized Source Sizing Report
Global VDB Templates
Scoped Access Control
LDAP/AD and SAML/SSO Configuration UI

2.1.6 Release 3.0
Cluster Node (RAC) management APIs
Ability to disable username/password authentication globally
LDAP/Active Directory groups
CDBs/vCDBs APIs
VDB Provisioning / update for EDSI (AppData) platforms
Engine registration wizard
Access Groups Management UI
Compliance Engine Management

2.1.7 Release 2.2

2.1.7.1 Deployment
Introducing Kubernetes and OpenShift support

2.1.7.2 APIs
Registration of Continuous Compliance Engines
Masking Connectors
“Move Masking Job”
Masking of mainframe objects
Provisioning enhancements for Oracle multi-tenant and RAC
LDAP/Active Directory authentication
Password management
Initial access management by Permissions, Roles, Policies, and Access Groups (permissions applied to all
objects of a type e.g. Stop VDB permission on all VDBs)
Distributed tracing and logging (Trace ID propagated down call stack)
Bulk delete of tags

2.1.7.3 UI
Continuous Data

Added tag support to the Infrastructure page
New dSources page
New VDBs page

Insights
Added an export behavior to the Storage Summary report
New dSource Inventory report

Data Control Tower – Data Control Tower Home

Release notes – 15

•
•

•

New VDB Inventory report
Admin

New Accounts page

2.2 Fixed issues

2.2.1 Release 8.0.1 changes

Bug Number Description

APIGW-4324 Fixed an issue where users who upgraded to DCT 8.0.0 were not able to
interact with the UI or connect to the GraphQL service container.

APIGW-4317 Fixed an issue where an error would occur when searching for a VDB in the
relative refresh UI.

2.2.2 Release 8.0.0 changes

Bug Number Description

APIGW-3764 Removed THE requirement on setting credentials if a masking job
execution happens on the origin engine.

APIGW-3771 Allows the policy name to be empty when provisioning a VDB.

APIGW-3783 Allows for an existing ImagePullSecret to be provided to to pull docker
images.

APIGW-3985 Fixed the "VDB Container is part of a container" error while refreshing
from bookmark directly on the VDB > Bookmark tab.

APIGW-3990 Fixed the broken view for a bookmark that has multiple VDBs on the Data
> Bookmark tab.

Data Control Tower – Data Control Tower Home

Release notes – 16

2.2.3 Release 7.0.1 changes

Bug Number Description

APIGW-3592,
APIGW-3594

Previously, a non-admin user that was granted access to a VDB, but not its
environment, would get an error accessing the VDB overview. A fix has been
implemented to show that the access error is with the environment and not
the VDB.

APIGW-3775 Fixed an issue where refreshing from the bookmark wizard was not showing
compatible bookmarks.

APIGW-3831 Fixed a certificates import failure if the truststore is on OpenShift.

2.2.4 Release 6.0.1 changes

Bug Number Description

APIGW-3460 Fixed a request timeout issue.

APIGW-3395 Fixed an issue where the refresh wizard did not update snapshots when
selecting different datasets.

2.2.5 Release 6.0.0 changes

Bug Number Description

APIGW-3223 Fixed an issue where DCT failed to get info from detached dSources.

2.2.6 Release 5.0.3 changes

Bug Number Description

APIGW-3344 Fixed an issue causing provision failure from RAC dSource to non-RAC
target.

Data Control Tower – Data Control Tower Home

Release notes – 17

2.2.7 Release 5.0.2 changes

Bug Number Description

APIGW-2979 VDB refresh will no longer fail if the refresh target name is not unique.

APIGW-2981 Fixed an issue where all the Compliance jobs and source jobs on the
engine will be deleted when a Compliance engine is unregistered.

2.2.8 Release 5.0.1 changes

Bug Number Description

APIGW-2463 The default docker-compose.yaml file is now provided with log size and
rotation configured for all containers.

APIGW-2735 Fixed an issue where DCT migration failed with "could not create unique
index environments_host_pkey".

APIGW-2828 Helm chart now allows cronjob resource limits to be set via the
values.yaml.

2.2.9 Release 3.0.0 changes

Bug Number Description

APIGW-1785 Fixed an issue where Nginx sometimes failed to start after a server
restart.

Data Control Tower – Data Control Tower Home

DCT concepts – 18

3 DCT concepts

3.1 Introduction
Data Control Tower (DCT) provides new and novel approaches to general Delphix workflows, delivering a more
streamlined developer experience. This article will introduce these concepts to Delphix and how they work with
DCT.

3.2 Concepts

3.2.1 Virtual Database (VDB) groups
Virtual Database (VDB) groups are a new concept to Delphix, which enable the association of one or more VDBs as a
single VDB group. This allows for bulk operations to be performed on the grouped VDBs, such as bookmark,
provision, refresh, rewind, and others. This will assist in complex application testing scenarios (e.g. integration and
functional testing) that require multiple data sources to properly complete testing.

With VDB groups, developers can now maintain data synchronicity between all grouped VDBs, which is particularly
useful for complex timeflow operations. For example, updating VDBs to reflect a series of schema changes across
data sources, or to reflect an interesting event in all grouped datasets. In order to maintain synchronicity among
grouped datasets, timeflow operations (refresh, rewind, etc.) must use a bookmark reference.

•

•

•

For VDB Provisioning, the UI supports these data platforms:

Oracle Single Instance Single Tenant

Oracle Single Instance Multi Tenant (for Linked CDB only)

MSSql Single Instance

For Infrastructure Connection Wizard, only UNIX standalone environments can be added via the UI.

Data Control Tower – Data Control Tower Home

DCT concepts – 19

•
•
•
•

In the above example, a VDB Group reference is created for three VDBs. At the end of the above timeline group, a
developer decides to rollback those VDBs to a previous snapshot. By issuing a single command via the VDB groups
endpoint, DCT will move all three back, ensuring that they all maintain referential synchronicity.

Bookmarks and VDB groups are loosely related; a VDB group can exist in the absence of any bookmarks, and a
bookmark can exist without any VDB group. It is important to note that the bookmark represents data, while the
VDB group represents the databases to make this data available.

3.2.2 Comparing Self-Service containers to VDB groups
As mentioned above, VDB groups are a crucial DCT concept that enable Self-Service functionality outside of the
Self-Service application. Consider VDB groups acting similarly to Self-Service containers, in that it provides
grouping and synchronization among VDBs, but VDB groups can provide a more flexible approach for users. Here
are some additional points for example:

The same VDB can be included in multiple VDB groups
Including a VDB in a VDB group does not prevent operations on the VDB individually
VDBs can be added to or removed from VDB groups
VDB groups do not have their own timeline

DCT will automatically stop an operation from executing if one or more objects are incompatible (e.g.
provisioning a VDB group into a set of environments, where one of the VDBs is incompatible, such as an
Oracle on Linux VDB provisioned onto a Windows environment).

VDB groups based operations will return a single job to monitor the overall status of the series of
individual VDB operations. If one of those individual operations is unable to complete, DCT will report a
“fail”, but any individual operations that are able to successfully complete will still do so.

Data Control Tower – Data Control Tower Home

DCT concepts – 20

•
•
•

•
•
•
•

3.2.3 Bookmarks
DCT Bookmarks are a new concept that represents a human-readable snapshot reference that is maintained within
DCT. This is not to be confused with Self-Service bookmarks, maintained separately within the Self-Service
application. With DCT Bookmarks, developers can now reference meaningful data (e.g. capturing a schema version
reference to pair with an associated code version, capturing test failure data so that developers can reproduce the
error in a developer environment, etc.) and use those references for any number of use-cases (e.g. versioning data
as code, quickly provisioning a break/fix environment with relevant data, etc.). DCT Bookmarks are compatible with
both VDBs and VDB groups, and can be used as a reference for common timeflow operations such as:

Provisioning a VDB or VDB group from a bookmark
Refreshing a VDB or VDB group to a bookmark
Rewinding a VDB or VDB group to a bookmark

3.2.4 Jobs
Jobs in DCT are the primary means of providing operation feedback (PENDING, STARTED, TIMEDOUT, RUNNING,
CANCELED, FAILED, SUSPENDED, WAITING, COMPLETED, ABANDONED) for top-level operations that are run on DCT.
Top-level operations represent the parent operation that may have one or more child-based jobs (e.g. refreshing a
VDB group is the parent job to all of the individual refresh jobs for the grouped VDBs under the VDB group
reference).

3.2.5 Tags
DCT Tags enable a new business metadata layer for users and consumers to filter, sort, and identify common
Delphix objects, to power any number of business-driven workflows. A tag is comprised of a (Key:Value) pair that
associates business-level data (e.g. location, application, owner, etc.) with supported objects. DCT 2.0 and above
support the following Tags:

Continuous Data Engines
Environments
dSources
VDBs

DCT Bookmarks have associated retention policies, the default value is 30 days, but policies can be
customized anywhere from a day to an infinite amount of time. Once the Bookmark expires, DCT will
delete the bookmark.
Bookmarks are compatible with individual VDBs and VDB groups. Bookmark Sharing is only available for
engines on version 6.0.13 and above.
DCT Bookmarks, when created, initiate a snapshot operation on each and every VDB in order to maintain
synchronicity between each VDB. In that same vein, bookmark-based VDB group operations will have each
VDB-specific sub-process run in parallel (as opposed to sequentially) to reduce drift between grouped
VDBs.



Top-level jobs will report a “FAILED” status if one or more child jobs fail. For child jobs that can complete,
DCT will continue to complete those jobs even if a parent job reports a failure.

Data Control Tower – Data Control Tower Home

DCT concepts – 21

•

•

Developers and administrators add and remove tags using tag-specific object endpoints (e.g. /vdbs/{vdbId}/

tags) and can leverage tags as search criteria when using the object-specific search endpoints (e.g. using filtering
language to narrow results).

Some sample tag-based use-cases include:

Refreshing all the VDBs owned by a specific App Team using an “Application: Payment Processing” tag. This
would be accomplished by querying “what VDBs have the (Application: Payment Processing) tag" and
feeding those VDB IDs into the refresh endpoint.
Driving accountability for VDB ownership by tagging primary and secondary owners for each VDB (e.g.
(primary_owner: John Smith), (secondary_owner: Jane Brown)). That way, if a VDB is overdue for a refresh,
tracking down an owner is a simple tag query.

3.2.6 Tag-based filtering
All taggable objects support tag-based filtering for API queries that adhere to the search standards documented in
API References(see page 150). A few examples of how tag-based filtering can be used are as follows:

List all VDBs of type 'Oracle' , of which IP address contains the '10.1.100' string and which have been

tagged with the 'team' tag, 'app-dev-1' .

database_type EQ 'Oracle' AND ip_address CONTAINS '10.1.100' and tags CONTAINS { key
EQ 'team' AND value EQ 'app-dev-1'}

3.3 Nuances

3.3.1 Stateful APIs
All applicable DCT APIs are stateful so that running complex queries against a large Delphix deployment can be
done rapidly and efficiently. DCT accomplishes this by periodically gathering and hosting telemetry-based Delphix
metadata from each engine.

3.3.2 Local data availability
DCT currently relies on existing Continuous Data and Compliance constructs around data-environment-engine
relationships. This means that DCT operations require VDBs to live on the engine where the parent dSource lives
and so on.

Tags are registered as an attribute that is specific to an object as opposed to a central tagging service. As
a result, tag-based querying can only be done on a per-object type basis.

A supported object can contain any number of tags.

Data Control Tower – Data Control Tower Home

DCT concepts – 22

3.3.3 Engine-to-DCT API mapping
Wherever possible, DCT has looked to provide an easier-to-consume developer experience. This means that in some
cases, an API on DCT could have an identical API on an engine. However, there are many instances of providing a
higher level abstraction for ease of consumption; one example is the data inventory APIs on DCT (sources,
dSources, VDBs), which are a simplified representation of data represented by the source, sourceconfig, and
repository endpoints on the local engine (source, dSource, and VDB detail are all combined under those three
endpoints).

3.3.4 Local references to global UUIDs
In order to avoid collision of identically-named and referenced objects, DCT generates Universally Unique
IDentifiers (UUID) for all objects. For existing objects on engines like dSources and VDBs, DCT will concatenate the
local engine reference with the engine UUID (e.g. 'Oracle-1' on engine '3cec810a-

ee0f-11ec-8ea0-0242ac120002' will be represented as 'Oracle-1-3cec810a-

ee0f-11ec-8ea0-0242ac120002' on DCT).

3.3.5 Environment representations
Environments within Delphix serve as a reference for the combination of a host and instance. This is coupled with
the fact that environments can be leveraged by multiple engines at the same time and that engines often have a
specific context to some of the elements that comprise an environment. For example, an environment could have
both an Oracle and ASE instance installed and that Engine A leverages an Oracle-based workflow and Engine B
leverages an ASE workflow. DCT will create two identifiers to represent the specific host and instance combinations.
Thus, in DCT, Engine A will be connected to a different uniquely identified Environment than Engine B.

As mentioned earlier with Engine-to-DCT API mapping, DCT aims to simplify the user experience with Delphix APIs
by combining different Continuous Data endpoints into a simplified DCT API. The Environment API does this by
combining environment, repository, and host endpoints so that writing queries against Delphix data is a much
simpler process. One example would be identifying all environments that have a compatible Oracle home for
provisioning:

repositories CONTAINS { database_type EQ 'Oracle' and allow_provisioning EQ true AND
version CONTAINS '19.2.3'}

3.3.6 Supported data sources/configurations
DCT is compatible with all Delphix-supported data sources and configurations.

3.3.7 Process feedback
Whenever a DCT request completes, it will return a JOB ID as its response. This Job ID can be used in conjunction
with the jobs endpoint to query the operation status.

Data Control Tower – Data Control Tower Home

Deployment – 23

4 Deployment
Data Control Tower is a container-based architecture and is currently certified with Kubernetes and OpenShift to
align with common enterprise container standards. The DCT architecture is comprised of multiple micro-services
that are each run on individual pods. This lends DCT to be a highly flexible and resilient deployment by enabling
customers and IT organizations to enact their own backup, scaling, and resiliency standards associated with
hosting container-based applications. Below is an architectural diagram of all the services that make up DCT as well
as the persistent storage for maintaining relationship metadata.

DCT is multi-cloud enabled, which means that a single DCT instance can be deployed to orchestrate (via HTTPS)
Continuous Data and Continuous Compliance workloads with Delphix engines located in other networks.
Alternatively, DCT can be localized to engines located within a network. DCT is a lightweight management
application, which means that it does not require a highly performant connection to complete its work and can
serve as a central management layer for Delphix engines globally.

Data Control Tower – Data Control Tower Home

Deployment – 24

•
•
•
•
•
•
•
•

This section will explain all of the required steps to deploy DCT on your container platform of choice.

4.1 Password policy default enablement
In order to enforce better security, a user password policy was enabled by default in DCT version 8.0. When a new
user is created or a password is changed for an existing user, the given password must meet the following criteria:

Password must be a minimum of 15 characters
Password must contain a digit
Password must contain a capital letter
Password must contain a lowercase letter
Password must contain a special character
Username cannot be used as the password
Previous two (2) passwords cannot be reused
Maximum of five (5) incorrect password attempts allowed

To allow passwords without any restrictions or criteria, disable the password policy using the DCT API.

API: /management/accounts/password-policies

HTTP method: PATCH

Request body:

{
 "enabled": false
}

/* Or, if you want to enforce a different password policy, use something similar to
this request body: */

{
 "enabled": true,

Data Control Tower – Data Control Tower Home

Deployment – 25

 "min_length": 10,
 "reuse_disallow_limit": 1,
 "digit": true,
 "uppercase_letter": true,
 "lowercase_letter": true,
 "special_character": false,
 "disallow_username_as_password": true,
 "maximum_password_attempts": 3
}

4.2 Supported engine versions
Data Control Tower has minimum engine versions that are actively tested against to ensure optimal
interoperability. Please ensure that all connected engines meet the version requirements:

Delphix Engine Version

Continuous Data 6.0.0.1 or higher

Continuous Compliance 6.0.13.0 or higher

4.3 Kubernetes

4.3.1 Installation and setup for Kubernetes

4.3.1.1 Hardware requirements
The hardware requirements for Data Control Tower (DCT) on Kubernetes are listed below. In addition to these
requirements, inbound port 443 must be open for API clients, and outbound port 443 to engines. This is the
minimum total resource request for the Kubernetes deployment of DCT. Individual service-level resource requests
are contained in values.yaml file and can be overridden during deployment.

CPU: 4-Core
Memory: 16GB
Storage: 50GB
Port: 443

The recommended minimum 50 GB of storage is shared across the Kubernetes cluster (i.e. hosts). All pods and/or
services use this storage for mounted volumes and other utilities including image storage. In a single node cluster,
if shared volumes are not externalized the host requires the full 50 GB. If the persistent volume is mounted
externally, the host requires 39 GB of storage, since the default storage required by the database (10 GB) and
gateway (1 GB) draws from the external storage. The default storage configuration for the database and gateway
can be modified in values.yaml.

Change in password policy will not impact the existing user’s password. The new password policy will
only be applicable when the password is changed or a new user is created.

Data Control Tower – Data Control Tower Home

1 https://dlpx-helm-dct.s3.amazonaws.com/

Deployment – 26

4.3.1.2 Installation requirements (Kubernetes)
DCT requires a running Kubernetes cluster to run, kubectl command line tool to interact with Kubernetes cluster
and HELM for deployment on to the cluster.

Requirement DCT Recommended Version Comments

Kubernetes Cluster 1.25 or above

HELM 3.9.0 or above HELM installation should support HELM v3.
More information on HELM can be found at
https://helm.sh/docs/ . To install HELM, follow
the installation instructions at https://helm.sh/
docs/intro/install/ .
DCT also requires access to the HELM
repository from where DCT charts can be
downloaded. The HELM repository URL is
https://dlpx-helm-dct.s3.amazonaws.com1.

kubectl 1.25.0 or above To install kubectl follow the instructions at
https://kubernetes.io/docs/tasks/tools/ .

4.3.1.3 Installing DCT
The latest version of the chart can be pulled locally with the following command:

curl -XGET https://dlpx-helm-dct.s3.amazonaws.com/delphix-dct-7.0.0.tgz -o delphix-
dct-7.0.0.tgz

This command will download a file with the name delphix-dct-7.0.0.tgz in the current working directory. The
downloaded file can be extracted using the following command:

tar -xvf delphix-dct-7.0.0.tgz

This will extract into the following directory structure:

delphix-dct

If an intermediate HELM repository is to be used instead of the default Delphix HELM repository, then the
repository URL, username, and password to access this repository needs to be configured in the
values.yaml file under imageCredentials section.

https://dlpx-helm-dct.s3.amazonaws.com/
https://helm.sh/docs/
https://helm.sh/docs/intro/install/
https://dlpx-helm-dct.s3.amazonaws.com/
https://kubernetes.io/docs/tasks/tools/

Data Control Tower – Data Control Tower Home

2 https://download.delphix.com/folder/1144/Delphix%20Product%20Releases/DCT

Deployment – 27

 |- values.yaml
 |- README.md
 |- Chart.yaml
 |- templates
 |-<all templates files>

For pulling the Docker images from the registry, temporary credentials would need to be configured/overridden in
the values.yaml file. For getting the temporary credentials, visit the Delphix DCT Download2 page and login with
your customer login credentials. Once logged in, select the DCT Helm Repository link and accept the Terms and
Conditions. Once accepted, login credentials will be presented. Note them down and edit the
imageCredentials.username and imageCredentials.password properties in the values.yaml file

as shown below:

Credentials to fetch Docker images from Delphix internal repository
 imageCredentials:
Username to login to docker registry
 username: <username>
Password to login to docker registry
 password: <password>

imageCredentials:
username: <username>
password: <password>

After extracting the chart, install it using the following command:

helm install dct-services delphix-dct

Once deployment is complete, check the status of the deployment using the following command:

helm list
NAME NAMESPACE REVISION UPDATED
STATUS CHART APP VERSION
dct-services default 1 2023-01-10 19:33:41.713202 -0900
deployed delphix-dct-7.0.0 7.0.0

delphix-dct is the name of the folder which was extracted in the previous step. In the above directory
structure, the values.yaml file contains all of the configurable properties with their default values. These
default values can be overridden while deploying DCT, as per the requirements. If the values.yaml file
needs to be overridden, create a copy of values.yaml and edit the required properties. While deploying
DCT, values.yaml file can be overridden using the following command:

helm install dct-services -f <path to edited values.yaml> <directory

path of the extracted chart>

https://download.delphix.com/folder/1144/Delphix%20Product%20Releases/DCT
https://download.delphix.com/folder/1144/Delphix%20Product%20Releases/DCT

Data Control Tower – Data Control Tower Home

Deployment – 28

4.3.2 DCT logs for Kubernetes
All DCT containers log to stdout and stderr so that their logs are processed by Kubernetes. To view container level
logs running on the Kubernetes cluster use:

kubectl logs <pod_name> -n dct-services

Log aggregators can be configured to read from stdout and stderr for all of the pods as per the
requirements.

4.3.3 Admin topics for Kubernetes

4.3.3.1 Deployment upgrade for Kubernetes
This article covers the upgrade process for DCT deployments on Kubernetes.

Create a new folder called dct-[version], where [version] is the latest version to which the platform is being
upgraded (i.e. if on 5.0.2, it would be 6.0.0).

$mkdir dct-[version]

Download the new version of chart using the following command in tandem with the newly created folder.

$cd dct-[version]
$curl -XGET https://dlpx-helm-dct.s3.amazonaws.com/delphix-dct-[version].tgz -o
delphix-dct-[version].tgz

The downloaded file is then extracted using the following command:

HELM will internally refer to the kubeconfig file to connect to the Kubernetes cluster. The default
kubeconfig file is present at location: ~/.kube/config

If the kubeconfig file needs to be overridden while running HELM commands, set the KUBECONFIG
environment variable to the location of the kubeconfig file.

Assuming an ingress controller configuration on the Kubernetes cluster is present, when accessing DCT
after the deployment, the ingress controller rule needs to be added for proxy service, along with port 443
(if SSL is enabled) and port 80 (if SSL is disabled).

This command will download a file named delphix-dct-[version].tgz in the folder dct-[version].

Data Control Tower – Data Control Tower Home

3 https://download.delphix.com/
4 https://download.delphix.com/

Deployment – 29

•

•

•

$tar -xvf delphix-dct-[version].tgz

Which will extract into the following directory structure:

delphix-dct
 |- values.yaml
 |- README.md
 |- Chart.yaml
 |- templates
 |-<all templates files>

Copy the values.yaml file from the previous version parallel to the dct-[version] folder.

Since the Docker Registry (AWS ECR) expires after 12 hours, the Docker Registry should be modified in the
values.yaml (from the previous existing version) with the latest password. It can be obtained from https://
download.delphix.com3. Here are some notes in regards to this step in the process:

This password update in values.yaml is only required if the user using Delphix provided a Docker Registry
directly in the deployment (i.e. values.yaml).
In case a user is using their internal Docker Registry, they should first pull the next version of the Docker
images from the Delphix provided registry, using a new password.
Steps to pull Docker images from the Docker Registry:

Docker login command (password from https://download.delphix.com4):

$docker login --username AWS --password [PASSWORD] 762392488304.dkr.ecr.us-west-2.ama
zonaws.com/delphix-dct

Pull Docker images of DCT Services:

$ docker pull
762392488304.dkr.ecr.us-west-2.amazonaws.com/delphix-dct:nginx-[VERSION]
$ docker pull
762392488304.dkr.ecr.us-west-2.amazonaws.com/delphix-dct:app-[VERSION]
$ docker pull
762392488304.dkr.ecr.us-west-2.amazonaws.com/delphix-dct:data-bookmarks-[VERSION]
$ docker pull
762392488304.dkr.ecr.us-west-2.amazonaws.com/delphix-dct:delphix-data-library-
[VERSION]
$ docker pull
762392488304.dkr.ecr.us-west-2.amazonaws.com/delphix-dct:graphql-[VERSION]
$ docker pull
762392488304.dkr.ecr.us-west-2.amazonaws.com/delphix-dct:ui-[VERSION]

This values.yaml file contains modified values from the existing previous version of deployment.

https://download.delphix.com/
https://download.delphix.com/
https://download.delphix.com/
https://download.delphix.com/

Data Control Tower – Data Control Tower Home

Deployment – 30

$ docker pull
762392488304.dkr.ecr.us-west-2.amazonaws.com/delphix-dct:jobs-[VERSION]
$ docker pull
762392488304.dkr.ecr.us-west-2.amazonaws.com/delphix-dct:postgres-[VERSION]
$ docker pull
762392488304.dkr.ecr.us-west-2.amazonaws.com/delphix-dct:virtualization-[VERSION]

The last step is to run the helm upgrade command:

helm upgrade -f values.yaml dct-services delphix-dct

4.3.3.2 Factory reset DCT for Kubernetes
To clean DCT installation run following command:

helm delete dct-services

4.4 OpenShift

4.4.1 Installation and setup for OpenShift

4.4.1.1 Hardware requirements
The hardware requirements for Data Control Tower to deploy on OCP are listed below. In addition to these
requirements, inbound port 443 or 80 must be open for API clients. This is the minimum total resource requirement
for the deployment.

CPU: 4-Core
Memory: 16GB
Storage: 50GB
Port: 443

4.4.1.2 Installation requirements (OpenShift)
DCT requires a running OpenShift cluster to run, oc command line tool to interact with OpenShift cluster and HELM
for deployment on to the cluster.

Requirement DCT Recommended Version Comments

OpenShift Cluster 4.12 or above

This process will delete services pod and database both.

Data Control Tower – Data Control Tower Home

5 https://dlpx-helm-dct.s3.amazonaws.com/

Deployment – 31

Requirement DCT Recommended Version Comments

HELM 3.9.0 or above HELM installation should support
HELM v3. More information on
HELM can be found at https://
helm.sh/docs/ . To install HELM,
follow the installation instructions
at https://helm.sh/docs/intro/
install/ .
DCT also requires access to the
HELM repository from where DCT
charts can be downloaded. The
HELM repository URL is https://
dlpx-helm-
dct.s3.amazonaws.com5.

oc 4.11.3 or above To install oc follow the instructions
at https://docs.openshift.com/
container-platform/4.8/
cli_reference/openshift_cli/
getting-started-cli.html .

4.4.1.3 Installation process

Jumpbox setup

OC login

Run the OC login command to authenticate OpenShift CLI with the server.

oc login https://openshift1.example.com --token=<<token>>

Verify KubeConfig

HELM will use the configuration file inside the $HOME/.kube/ folder to deploy artifacts on an OpenShift cluster.

Be sure the config file has the cluster context added, and the current-context is set to use this cluster. To verify the
context, run this command:

If an intermediate HELM repository is to be used instead of the default Delphix HELM repository, then the
repository URL, username, and password to access this repository needs to be configured in the
values.yaml file under imageCredentials section.

https://dlpx-helm-dct.s3.amazonaws.com/
https://helm.sh/docs/
https://helm.sh/docs/intro/install/
https://dlpx-helm-dct.s3.amazonaws.com/
https://docs.openshift.com/container-platform/4.8/cli_reference/openshift_cli/getting-started-cli.html

Data Control Tower – Data Control Tower Home

Deployment – 32

oc config current-context

Create a new project

Create a new project named dct-services using the command below:

oc new-project dct-services --description="DCT Deployment project" --display-name="dc
t-services"

Installing Helm

Install HELM using the following installation instructions mentioned at https://helm.sh/docs/intro/install/.

DCT also requires access to the HELM repository from where DCT charts can be downloaded. Run the following
commands to add the repository:

curl -XGET https://dlpx-helm-dct.s3.amazonaws.com/delphix-dct-7.0.0.tgz -o delphix-
dct-7.0.0.tgztar -xvf delphix-dct-7.0.0.tgz

Deploy DCT chart

Find and update fsGroup values.yaml file

The fsGroup field is used to specify a supplementary group ID. All processes of the container, the owner of the
volume, and any files created on the volume are also part of this supplementary group ID.

For OpenShift deployment, this value need to be specified in the values.yaml file.

Find the allowed supplementary group range:

oc get project dct-services -o yaml

A response should appear as follows:

apiVersion: project.openshift.io/v1
kind: Project
metadata:
 annotations:
 openshift.io/description: ""
 openshift.io/display-name: ""
 openshift.io/requester: cluster-admin
 openshift.io/sa.scc.mcs: s0:c32,c4
 openshift.io/sa.scc.supplemental-groups: 1001000000/10000
 openshift.io/sa.scc.uid-range: 1001000000/10000
 creationTimestamp: "2023-01-18T10:33:04Z"
 labels:

https://helm.sh/docs/intro/install/

Data Control Tower – Data Control Tower Home

Deployment – 33

 kubernetes.io/metadata.name: dct-services
 pod-security.kubernetes.io/audit: restricted
 pod-security.kubernetes.io/audit-version: v1.24
 pod-security.kubernetes.io/warn: restricted
 pod-security.kubernetes.io/warn-version: v1.24
 name: dct-services
 resourceVersion: "99974"
 uid: ccdd5c9f-2ce5-49b4-91a7-662e0598b63b
spec:
 finalizers:
 - kubernetes
status:
 phase: Active

Copy the first value from the openshift.io/sa.scc.supplemental-groups line, before the slash (e.g.
1001000000).

Paste this value in the values.yaml file:

Define SecurityContextConstraints for the pod
podSecurityContext:
 fsGroup: 1001000000

Create values.yaml file

Create a values.yaml file and update the properties according to your environment. A sample values.yaml file can
be downloaded below.

values.yaml

(see page 30)

Deploy DCT

Run the following command to deploy the DCT chart:

Data Control Tower – Data Control Tower Home

Deployment – 34

helm install -f <path to edited values.yaml> dct-services apigw-repo/delphix-dct –
version=7.0.0

Verify deployment

All the images will be downloaded and then deployed. If some pods restarted at the startup, this is expected. After
some time, a total of 9 pods will be in running status and one job pod will be in completed status.

oc get pods -n dct-services

Find API key

For the very first deployment bootstrap API key will be printed in logs, please view gateway pod logs and find for
“NEWLY GENERATED API KEY”. the value is the API key.

oc logs <gateway-pod-name> -n dct-services

4.4.1.4 Configure Ingress
DCT only works with HTTPS Ingress, the UI does not support HTTP.

Creating route

To create a route, you can use the OpenShift console and create a new one for the DCT service.

If SSL is terminated at this route, only then should the useSSL value in values.yaml be updated to false, so that 80
port will be exposed in proxy service and can be used to configure the route. The following screenshot shows the
route that forwards requests to 80 port of proxy service:

Data Control Tower – Data Control Tower Home

Deployment – 35

If SSL is not terminated at the Route level, then create a PassTrough route and use 443 port of the proxy service, and
configure the SSL certificate and key in the values.yaml file:

Data Control Tower – Data Control Tower Home

Deployment – 36

4.4.2 OpenShift authentication

4.4.2.1 Introduction
DCT uses Nginx/OpenResty as an HTTP server and a reverse proxy for the application. Using the default
configuration, all connections to DCT are over HTTPS and require the user to authenticate. There are three
supported methods for authentication; API keys, Username/Password, and OpenID Connect.

4.4.2.2 Enable OAuth2 authentication
By default APIKey authentication will be enabled and when DCT starts it will generate a new API key(see page 55) in
logs if you want to enable openId connect authentication then follow below procedure:

Update the below properties in the values.yaml file and restart DCT:

Data Control Tower – Data Control Tower Home

Deployment – 37

flag to enable api_key based authentication
apiKeyEnabled: false
flag to enable OAuth2 based authentication
openIdEnabled: true
URL of the discovery endpoint as defined by the OpenId Connect Discovery
specification. This needs to be set if 'openIdEnabled' is set to true
openIdServerUrl: https://delphix.okta.com/oauth2/default/.well-known/oauth-
authorization-server
OAuth2 jwt claim name that should be used as client_id
jwtClaimForClientId: sub
OAuth2 jwt claim name that should be used as client_name
jwtClaimForClientName: sub

4.4.3 DCT logs for OpenShift
All DCT containers log to stdout and stderr, so that their logs are processed by OpenShift. To view container level
logs running on the OpenShift cluster, use this command:

oc logs <pod_name> -n dct-services

Log aggregators can be configured to read from stdout and stderr for all of the pods as per the requirements.

4.4.4 Admin topics for OpenShift

4.4.4.1 Deployment upgrade for OpenShift
This article covers the upgrade process for DCT deployments on Kubernetes.

Create a new folder called dct-[version], where [version] is the latest version to which the platform is being
upgraded (i.e. if on 5.0.2, it would be 6.0.0).

$mkdir dct-[version]

Download the new version of chart using the following command in tandem with the newly created folder.

$cd dct-[version]
$curl -XGET https://dlpx-helm-dct.s3.amazonaws.com/delphix-dct-[version].tgz -o
delphix-dct-[version].tgz

The downloaded file is then extracted using the following command:

This command will download a file named delphix-dct-[version].tgz in the folder dct-[version].

Data Control Tower – Data Control Tower Home

6 https://download.delphix.com/
7 https://download.delphix.com/

Deployment – 38

•

•

•

$tar -xvf delphix-dct-[version].tgz

Which will extract into the following directory structure:

delphix-dct
 |- values.yaml
 |- README.md
 |- Chart.yaml
 |- templates
 |-<all templates files>

Copy the values.yaml file from the previous version parallel to the dct-[version] folder.

Since the Docker Registry (AWS ECR) expires after 12 hours, the Docker Registry should be modified in the
values.yaml (from the previous existing version) with the latest password. It can be obtained from https://
download.delphix.com6. Here are some notes in regards to this step in the process:

This password update in values.yaml is only required if the user using Delphix provided a Docker Registry
directly in the deployment (i.e. values.yaml).
In case a user is using their internal Docker Registry, they should first pull the next version of the Docker
images from the Delphix provided registry, using a new password.
Steps to pull Docker images from the Docker Registry:

Docker login command (password from https://download.delphix.com7):

$docker login --username AWS --password [PASSWORD] 762392488304.dkr.ecr.us-west-2.ama
zonaws.com/delphix-dct

Pull Docker images of DCT Services:

$ docker pull
762392488304.dkr.ecr.us-west-2.amazonaws.com/delphix-dct:nginx-[VERSION]
$ docker pull
762392488304.dkr.ecr.us-west-2.amazonaws.com/delphix-dct:app-[VERSION]
$ docker pull
762392488304.dkr.ecr.us-west-2.amazonaws.com/delphix-dct:data-bookmarks-[VERSION]
$ docker pull
762392488304.dkr.ecr.us-west-2.amazonaws.com/delphix-dct:delphix-data-library-
[VERSION]
$ docker pull
762392488304.dkr.ecr.us-west-2.amazonaws.com/delphix-dct:graphql-[VERSION]
$ docker pull
762392488304.dkr.ecr.us-west-2.amazonaws.com/delphix-dct:ui-[VERSION]

This values.yaml file contains modified values from the existing previous version of deployment.

https://download.delphix.com/
https://download.delphix.com/
https://download.delphix.com/
https://download.delphix.com/

Data Control Tower – Data Control Tower Home

8 https://docs.docker.com/engine/install/#server

Deployment – 39

$ docker pull
762392488304.dkr.ecr.us-west-2.amazonaws.com/delphix-dct:jobs-[VERSION]
$ docker pull
762392488304.dkr.ecr.us-west-2.amazonaws.com/delphix-dct:postgres-[VERSION]
$ docker pull
762392488304.dkr.ecr.us-west-2.amazonaws.com/delphix-dct:virtualization-[VERSION]

The last step is to run the helm upgrade command:

helm upgrade -f values.yaml dct-services delphix-dct

4.4.4.2 Factory reset DCT for OpenShift
To clean DCT installation run following command:

helm delete dct-services:

4.5 Docker Compose

4.5.1 Installation and setup for Docker Compose

4.5.1.1 Hardware requirements
The hardware requirements for Data Control Tower are listed below. In addition to these requirements, inbound
port 443 must be open for API clients, and outbound port 443 to engines.

CPU: 4-Core
Memory: 2GB
Storage: 50GB
Port: 443

4.5.1.2 Installation requirements (Docker Compose)
DCT requires Docker and Docker Compose to run, thus, Linux versions and distributions that have been verified to
work with Docker are supported. To see a list of supported distributions, please reference this Docker article8.

This process will delete both services pod and database.

Docker Compose should only be used to deploy DCT in an evaluation/testing capacity, and production
DCT workloads in Docker Compose are not fully supported. Installations starting on Docker Compose may
be migrated to Kubernetes or OpenShift by using the steps in the technical documentation. In-place
upgrades from Docker Compose to Kubernetes or OpenShift are not supported.



https://docs.docker.com/engine/install/#server
https://docs.docker.com/engine/install/#server

Data Control Tower – Data Control Tower Home

9 https://docs.docker.com/engine/install/
10 https://docs.docker.com/compose/install/
11 https://docs.docker.com/engine/install/linux-postinstall/
12 https://download.delphix.com/folder

Deployment – 40

This example uses a Docker installation9 and is completed on an Ubuntu 20.04 VM.

To begin, uninstall any old versions of Docker.

sudo apt-get remove docker docker-engine docker.io containerd runc

Next, update the package lists and install Docker.

sudo apt-get update
sudo apt-get install docker.io

Last, install Docker Compose10.

sudo curl -L "https://github.com/docker/compose/releases/download/1.29.1/docker-
compose-$(uname -s)-$(uname -m)" -o /usr/local/bin/docker-compose
sudo chmod +x /usr/local/bin/docker-compose

Running Docker as non-root (optional)

To avoid prefacing the Docker command with sudo, create a Unix group called docker and add users to it. When the
Docker daemon starts, it creates a Unix socket accessible by members of the Docker group. See Docker Post
Installation11 documentation for details.

sudo groupadd docker
sudo usermod -aG docker $USER

4.5.1.3 Unpack and install DCT
Once Docker and Docker Compose are installed, DCT can be installed. Begin by downloading the latest version of
the tarball from the Delphix Download site12. Next, transfer the file to the Linux machine where Docker is installed.
Run the following commands to extract the containers and load them into Docker:

tar -xzf delphix-dct*.tar.gz
for image in *.tar; do sudo docker load --input $image; done

Docker-Compose is packaged with Docker engine version 20.10.15 and up.

https://docs.docker.com/engine/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/engine/install/linux-postinstall/
https://download.delphix.com/folder
https://docs.docker.com/engine/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/engine/install/linux-postinstall/
https://download.delphix.com/folder

Data Control Tower – Data Control Tower Home

Deployment – 41

4.5.1.4 Run DCT
To run DCT, navigate to the location of the extracted docker-compose.yaml file from the tarball and run the
following command. Using -d in the command will start up the application in the background.

sudo docker-compose up -d

Running docker ps should show 9 containers up and running:

sudo docker ps
CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES
75a9df0cae07 delphix-dct-proxy:6.0.0 "/sbin/tini -- /boot…" 7 seconds
ago Up 4 seconds 0.0.0.0:443->8443/tcp delphix-dct-proxy:3.0.0
a23f4fbe0220 delphix-dct-app:6.0.0 "java -jar /opt/delp…" 7 seconds
ago Up 5 seconds delphix-dct-app:6.0.0
96ba8018fa03 delphix-dct-data-library:6.0.0 "/usr/bin/tini -- ./…" 7 seconds
ago Up 5 seconds delphix-dct-data-library:6.0.0
8e5b1e671acc delphix-dct-jobs:6.0.0 "/usr/bin/tini -- ./…" 7 seconds
ago Up 5 seconds delphix-dct-jobs:6.0.0
96049058f025 delphix-dct-data-bookmarks:6.0.0 "/usr/bin/tini -- ./…" 7 seconds
ago Up 5 seconds delphix-dct-data-bookmarks:6.0.0
20d1782cb3bb delphix-dct-ui:6.0.0 "node ./index.js" 7 seconds
ago Up 5 seconds delphix-dct-ui:6.0.0
4fae43c79e8d delphix-dct-virtualization:6.0.0 "/usr/bin/tini -- ./…" 7 seconds
ago Up 5 seconds delphix-dct-virtualization:6.0.0
83d7d661d8a0 delphix-dct-graphql:6.0.0 "/bin/sh -c 'BASE_UR…" 7 seconds
ago Up 6 seconds delphix-dct-graphql:6.0.0
3dded474e28b delphix-dct-postgres:6.0.0 "docker-entrypoint.s…" 7 seconds
ago Up 6 seconds 5432/tcp delphix-dct-postgres:6.0.0

4.5.2 Bootstrapping API Keys

There is a special process to bootstrap the creation of the first API key. This first API key should only be used to
create another key and then promptly deleted, since the bootstrap API will appear in the logs. This process can be
repeated as many times as needed, for example, in a case where existing API keys are lost or have been deleted. It
also means that the Linux users with permissions to edit the docker-compose file implicitly have the ability to get
an API key at any time. There is no mechanism to lock this down after the first bootstrap key is created.

Begin by stopping the application with the following command:

sudo docker-compose stop

Docker Compose should only be used to deploy DCT in an evaluation/testing capacity.

Data Control Tower – Data Control Tower Home

13 https://docs.docker.com/storage/bind-mounts/

Deployment – 42

Once the application is stopped, edit the docker-compose.yaml file and modify the following lines to the DCT
section, to set the API_KEY_CREATE to the string value "true":

services:
 gateway:
 environment:
 API_KEY_CREATE: "true"

Start DCT again with sudo docker-compose up . You will see the following output in the logs for the app
container (the key will be different from this example):

NEWLY GENERATED API KEY: 1.0p9PMkZO4Hgy0ezwjhX0Fi4lEKrD4pflejgqjd0pfKtywlSWR9G0fIaWaj
uKcBT3

Copy the API Key and shut down the DCT app. The API key can now be used to authenticate with DCT. Remember
that the API Key value must be prefixed with apk. An example cURL command with the above API Key appears as
follows:

curl --header 'Authorization: apk
1.0p9PMkZO4Hgy0ezwjhX0Fi4lEKrD4pflejgqjd0pfKtywlSWR9G0fIaWajuKcBT3'

Edit the docker-compose.yaml file to set the API_KEY_CREATE environment variable value back to "false" and

restart DCT again with sudo docker-compose up -d .

4.5.3 Custom configuration
Docker Compose should only be used to deploy DCT in an evaluation/testing capacity.

4.5.3.1 Introduction
DCT was designed for users to configure Delphix applications in a way that would meet their security requirements,
which handled with a custom configuration. This article provides background information on performing custom
configurations, which are referenced throughout DCT articles and sections.

4.5.3.2 Bind mounts

Configuration of DCT is achieved through a combination of API calls and the use of Docker bind mounts13. A bind
mount is a directory or file on the host machine that will be mounted inside the container. Changes made to the
files on the host machine will be reflected inside the container. It does not matter where the files live on the host
machine, but the files must be mounted to specific locations inside the container so that the application can find
them.

The DCT and proxy containers can both be configured via separate bind mounted directories. Each container
requires all configuration files to be mounted to the /etc/config directory inside the container. Therefore, it is

https://docs.docker.com/storage/bind-mounts/
https://docs.docker.com/storage/bind-mounts/

Data Control Tower – Data Control Tower Home

Deployment – 43

recommended to create a directory for each container on the host machine to store all of the configuration files and
mount them to /etc/config . This is done by editing the docker-compose.yaml . Under proxy services,
add a volumes section if one does not already exist; this is used to mount the configuration directory on the host to
/etc/config . For example, if /my/proxy/config is the directory on the host that contains the

configuration files, then the relevant part of the compose file would look like this:

services:
 proxy:
 volumes:
 - /my/proxy/config:/etc/config

To change the configuration of the DCT container, make a similar change under its service section, the only
difference being the directory on the host. After making this change, the application will need to be stopped and
restarted.

The structure of /my/proxy/config will need to match the required layout in /etc/config . When each
container starts, it will create default versions of each file and place them in the expected location. It is highly
recommended to start from the default version of these files. For example, if /my/proxy/config is the bind
mount directory on the host, it could be populated with all the default configuration files by running the following
commands.

First, create an nginx directory inside /my/proxy/config on the host.

cd /my/proxy/config
mkdir nginx

Find the id of the proxy container with docker ps. Look for the container with a delphix-dct-proxy image name. To
determine the user and group ownership for any configuration files, start the containers and open a shell to the
relevant one (nginx in this example), then examine the current user/group IDs associated with the files.

$ docker ps

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES
ac343412492a delphix-dct-proxy:3.0.0 "/bootstrap.sh" 8 minutes ago Up
8 minutes 0.0.0.0:443->443/tcp, :::443->443/tcp dct-packaged_proxy_1

In the above example, ac343412492a is the id. Run the following command to copy the default files to the bind
mount.

docker cp <container id>:/etc/config/nginx /my/proxy/config/nginx

One can always go back to the original configuration by removing the bind-mount and restarting the container or
using docker cp as in the previous example to overwrite the custom files with the default versions.

Data Control Tower – Data Control Tower Home

14 https://docs.docker.com/config/containers/logging/
15 https://docs.docker.com/config/containers/logging/configure/
16 https://docs.docker.com/compose/compose-file/compose-file-v3/#logging

Deployment – 44

4.5.4 Docker logs
Docker Compose should only be used to deploy DCT in an evaluation/testing capacity.

DCT leverages the Docker logging14 infrastructure. All containers log to stdout and stderr so that their logs are
processed by Docker. Docker supports logging drivers for a variety of tools such as Fluentd, Amazon CloudWatch,
and Splunk to name a few. See Docker documentation here15 on how to configure them. These changes will need to
be made to the docker-compose.yaml file. This link16 explains how to alter the compose file to adjust the logging
driver. For example, if you want to use syslog for the proxy container then it would look like this:

services:
 proxy:
 logging:
 driver: syslog
 options:
 syslog-address: "tcp://192.123.1.23:123"

4.5.5 Migration topics

4.5.5.1 Migrate to Kubernetes

Overview

Installations starting on Docker Compose may be migrated to Kubernetes by moving the persistent data store using
the following steps. In-place upgrades from Docker Compose to Kubernetes are not supported.

Migration Process

Stop DCT services. In order to avoid a situation of losing data, stop serving the upcoming traffic with:

~$ docker-compose stop

Copy the Postgres Docker volume folder data on a local machine with:

~$ mkdir database
~$ docker cp {dbcontainer_Id}:/var/lib/postgresql/data ./database

Copy the encryption key Docker volume folder data on a local machine with:

During the migration process, there will be a downtime period where the service cannot be used.

https://docs.docker.com/config/containers/logging/
https://docs.docker.com/config/containers/logging/configure/
https://docs.docker.com/compose/compose-file/compose-file-v3/#logging
https://docs.docker.com/config/containers/logging/
https://docs.docker.com/config/containers/logging/configure/
https://docs.docker.com/compose/compose-file/compose-file-v3/#logging

Data Control Tower – Data Control Tower Home

Deployment – 45

~$ mkdir data_key
~$ docker cp {gateway_container_id}:/data ./data_key

Move the copied volume folders (database and data_key from the previous step) to the Kubernetes host machine
where DCT is up and running.

Update the values.yaml file to add the list of certificates which were used in the previous DCT version (present in
mounted trustStore). Update the deployment with the new values.yaml file.

Terminate the proxy pod to stop serving external traffic with:

~$ kubectl scale --replicas=0 deployment/proxy -n dct-services

Terminate the database to stop internal threads using the database with:

~$ kubectl scale --replicas=0 deployment/database -n dct-services

Create a dummy pod to access the Persistent Volume. Use the Pod.yaml as an example:

apiVersion: v1
kind: Pod
metadata:
Namespace: dct-services
name: dummy-pod
 labels:
 app: dummy-pod
spec:
 containers:
 - image: ubuntu
 command:
 - "sleep"
 - "604800"
 imagePullPolicy: IfNotPresent
 name: ubuntu
 restartPolicy: Always
 volumes:
 - name: gwdatabase-data
 persistentVolumeClaim:
 claimName: gwdatabase-data

Followed by this command to actually create the dummy pod:

Mounted Docker volume folder content for database is copied in database folder on local machine.

Mounted Docker volume folder content for encryption key is copied in the data_key folder on local
machine.

Data Control Tower – Data Control Tower Home

Deployment – 46

~$ kubectl apply -f pod.yaml -n dct-services

Restore previous DCT version volume data with DCT deployed on the Kubernetes setup (in Persistent Volume).

Move the encryption key with:

~$cd data_key
~$ kubectl cp data dct-services/{gateway_pod_name}:/

Move the Postgres data with:

~$cd database
~$ kubectl cp data dct-services/{dummy_pod_name}:/var/lib/postgresql

Delete the dummy pod with:

~$ kubectl delete pod dummy-pod -n dct-services

Start the database pod (scale to 1) with:

~$ kubectl scale --replicas=1 deployment/database -n dct-services

Delete or patch the gateway pod with:

~ % kubectl delete pod {gateway_pod_name} -n dct-services

Delete or patch the data-library pod with:

~ % kubectl delete pod {data-library_pod_name} -n dct-services

Delete or patch the jobs pod with:

~ % kubectl delete pod {jobs_pod_name} -n dct-services

Delete or patch the data-bookmarks pod with:

~ % kubectl delete pod {data-bookmarks_pod_name} -n dct-services

Start the proxy service to serve the external service:

Data Control Tower – Data Control Tower Home

Deployment – 47

4.5.5.2 Migrate to OpenShift

Overview

Installations starting on Docker Compose may be migrated to OpenShift by moving the persistent data store using
the following steps. In-place upgrades from Docker Compose to OpenShift are not supported.

Migration Process

Stop DCT services. In order to avoid a situation of losing data, stop serving the upcoming traffic with:

~$ docker-compose stop

Copy the Postgres Docker volume folder data on a local machine with:

~$ mkdir database
~$ docker cp {dbcontainer_Id}:/var/lib/postgresql/data ./database

Copy the encryption key Docker volume folder data on a local machine with:

~$ mkdir data_key
~$ docker cp {gateway_container_id}:/data ./data_key

Move the copied volume folders (database and data_key from the previous step) to the Kubernetes host machine
where DCT is up and running.

Update the values.yaml file to add the list of certificates which were used in the previous DCT version (present in
mounted trustStore). Update the deployment with the new values.yaml file.

Terminate the proxy pod to stop serving external traffic with:

~$ oc scale --replicas=0 deployment/proxy -n dct-services

Terminate the database to stop internal threads using the database with:

During the migration process, there will be a downtime period where the service cannot be used.

•

•

Mounted Docker volume folder content for database is copied in database folder on local
machine.

Mounted Docker volume folder content for encryption key is copied in the data_key folder on
local machine.

Data Control Tower – Data Control Tower Home

Deployment – 48

~$ oc scale --replicas=0 deployment/database -n dct-services

Create a dummy pod to access the Persistent Volume. Use the Pod.yaml as an example:

apiVersion: v1
kind: Pod
metadata:
Namespace: dct-services
name: dummy-pod
 labels:
 app: dummy-pod
spec:
 containers:
 - image: ubuntu
 command:
 - "sleep"
 - "604800"
 imagePullPolicy: IfNotPresent
 name: ubuntu
 restartPolicy: Always
 volumes:
 - name: gwdatabase-data
 persistentVolumeClaim:
 claimName: gwdatabase-data

Followed by this command to actually create the dummy pod:

~$ oc apply -f pod.yaml -n dct-services

Restore previous DCT version volume data with DCT deployed on the Kubernetes setup (in Persistent Volume).

Move the encryption key with:

~$cd data_key
~$ oc cp data dct-services/{gateway_pod_name}:/

Move the Postgres data with:

~$cd database
~$ oc cp data dct-services/{dummy_pod_name}:/var/lib/postgresql

Delete the dummy pod with:

~$ oc delete pod dummy-pod -n dct-services

Start the database pod (scale to 1) with:

Data Control Tower – Data Control Tower Home

17 https://docs.docker.com/storage/volumes/#backup-restore-or-migrate-data-volumes

Deployment – 49

~$ oc scale --replicas=1 deployment/database -n dct-services

Delete or patch the gateway pod with:

~ % oc delete pod {gateway_pod_name} -n dct-services

Delete or patch the data-library pod with:

~ % oc delete pod {data-library_pod_name} -n dct-services

Delete or patch the jobs pod with:

~ % oc delete pod {jobs_pod_name} -n dct-services

Delete or patch the data-bookmarks pod with:

~ % oc delete pod {data-bookmarks_pod_name} -n dct-services

Start the proxy service to serve the external service:

~$ oc scale --replicas=1 deployment/proxy -n dct-services

4.5.6 Admin topics for Docker Compose

4.5.6.1 Backup DCT on Docker Compose

This article discusses how to backup DCT. The data that needs to be backed up is the Docker volumes used by the
DCT container, gwdatabase container, and the configuration directories on the host that are bind mounted to the
containers.

The Docker volumes named {xxx}delphix-dct-data and {xxx}delphix-dct-database-data
should be backed up to prevent data loss. This Docker article17 explains how to backup a data volume.

The bind mount directories containing the configuration files are standard directories that can be backed up as
desired. A simple approach would be to create a tar file of the contents. If /my/config is the bind mount directory
on the host, then this can be done with the following command:

tar -czf gateway-backup.tgz /my/config

Docker Compose should only be used to deploy DCT in an evaluation/testing capacity.

https://docs.docker.com/storage/volumes/#backup-restore-or-migrate-data-volumes
https://docs.docker.com/storage/volumes/#backup-restore-or-migrate-data-volumes

Data Control Tower – Data Control Tower Home

Deployment – 50

4.5.6.2 Deployment upgrade for Docker Compose

Introduction

This article describes the procedure to upgrade the DCT version without losing any data. Docker Compose uses the
concept of ‘project’ to create unique identifiers for all of a project’s containers and other resources (like volumes,
etc.).

Get the current project name and note it down using the following command:

The volume name would be of the format {project-name}_gateway-data and {project-name}_gwdatabase-
data. In the below example, the project name is delphix-dct.

docker volume ls
DRIVER VOLUME NAME
local delphix-dct_gateway-data
local delphix-dct_gwdatabase-data

Bring down DCT services using the following command:

docker compose down

Refer to the Installation and Setup article to download and extract the new release tarball, then load Docker
images.

Navigate to the extracted directory which contains the docker-compose.yaml file. By default, Docker Compose
uses the extracted folder name as project-name.

Docker Compose should only be used to deploy DCT in an evaluation/testing capacity.

1.

2.

DCT versions 2.0.0 through 6.0.2 running on Docker Compose, that are being upgraded to DCT 7.0.0 or
later, may experience potential failure to start post-upgrade, resulting in a "permission denied" error in
the logs. Operations post-upgrade may also fail with internal errors.
The issue is due to the UID running the application containers changing from UID 1000 (in DCT 2.0.0
through 6.0.2) to UID 1010 (in DCT 7.0.0 and later). Resolving the issues requires the following one-time
change and no container restart is required:

Change ownership of the volume associated to the gateway container to the new UID:
docker exec -u 0 -it <gateway-container-name> chown

delphix:delphix /data
If bind mounts have been used to configure DCT, they must grant permission to the user with UID
1010 (GUID 1010) to read/write files, for example:
chown 1010:1010 /path/to/nginx/bind/mount



Edit the docker-compose.yaml file. Changes made to the docker-compose.yaml prior to upgrade file must
be applied to the newly extracted docker-compose.yaml file.



Data Control Tower – Data Control Tower Home

Deployment – 51

With that, either rename the extracted folder to match the project-name and run:

docker compose up -d

OR run the below command with the project-name noted above from step #1 above

docker compose -p <project-name> up -d

4.5.6.3 Factory reset DCT for Docker Compose

This article explains how to factory reset DCT. Factory resetting means deleting all of the configuration and data
associated with DCT. Perform this step only if you are absolutely sure about this and understand the implications.

Bring all of the DCT services down with this command:

docker compose down

List all Docker volumes being used and note down the volume names:

docker volume ls
DRIVER VOLUME NAME
local dct_gateway-data
local dct_gwdatabase-data

Delete the Docker volumes that are listed from the previous command:

docker volume rm dct_gateway-data
docker volume rm dct_gwdatabase-data

If the -p argument is used to deploy DCT services, then the corresponding command to bring down the
DCT services would be:

docker compose -p <project-name> down

Docker Compose should only be used to deploy DCT in an evaluation/testing capacity.

Data Control Tower – Data Control Tower Home

Deployment – 52

4.6 Engines: connecting/authenticating

4.6.1 Introduction
After DCT Authentication is complete, the HTTPS should be securely configured on DCT and able to be
authenticated against. The next step is to register an engine with DCT so that it can fetch results. DCT connects to
all engines over HTTPS, thus some configurations might be required to ensure it can communicate successfully.

4.6.2 Truststore for HTTPS
If the CA certificate that signed the engine's HTTPS certificate is not a trusted root CA certificate present in the JDK,
then custom CA certificates can be provided to DCT. If these certificates are not provided, a secure HTTPS
connection cannot be established and registering the engine will fail. The insecure_ssl engine registration
parameter can be used to bypass the check, however, this should not be used unless the risks are understood.

Get the public certificate of the CA that signed the engine’s HTTPS certificate in PEM format. IT team help may be
required to get the correct certificates. Base64 encode the certificate with:

cat mycertfile.pem | base64 -w 0

Copy the Base64 encoded value from the previous step and configure in values.yaml file under
truststoreCertificates section. e.g. section will look like this:

truststoreCertificates:
<certificate_name>.crt: <base64 encode certificate string value in single line>

<certificate_name> can be any logically valid string value for e.g. “engine”.

All the certificates configured in truststoreCertificates section will be read and included in the trustStore which
would be then used for SSL/TLS communication between DCT and Delphix Engine.

4.6.3 Authentication with engine
All authentication with the Delphix Engine is done with the username and password of a domain admin engine user.
There are two methods of storing these credentials with DCT. They can either be stored and encrypted on DCT itself
or retrieved from a password vault. We recommend fetching the credentials from a vault. Currently only the
HashiCorp vault is supported.

4.6.4 HashiCorp vault
There are two high-level steps to configuring a HashiCorp vault. The first is to set up authentication with the vault
and register the vault. The second is to tell DCT how to get the specific engine credentials needed from that
registered vault. A single vault can be used for multiple different Delphix Engines.

Data Control Tower – Data Control Tower Home

18 https://www.vaultproject.io/docs/auth/token
19 https://www.vaultproject.io/docs/auth/approle
20 https://www.vaultproject.io/docs/auth/cert
21 https://www.vaultproject.io/docs/commands

Deployment – 53

4.6.4.1 Vault authentication and registration

First, DCT needs to be able to authenticate with the vault. DCT supports the Token18, AppRole19, and TLS
Certificates20 authentication methods. This is done by passing a command to the HashiCorp CLI21. It is
recommended to first ensure that successful authentication is done and one can retrieve the credentials with the
HashiCorp CLI directly to ensure the correct commands are passed to DCT.

Adding a vault to DCT is done through API calls to the /v2/management/vaults/hashicorp endpoint. All
authentication methods requires the location of the vault is provided through the env_variables property in the
POST body like so:

"env_variables": {
 "VAULT_ADDR": "https://10.119.132.40:8200"
 }

4.6.4.2 Token
To use the token authentication method, this needs to be included as part of the env_variables field. The full
example to register the vault would appear as:

curl --location --request POST 'https://<hostname>/v2/management/vaults/hashicorp' \
--header 'Content-Type: application/json' \
--header 'Accept: application/json' \
--header 'Authorization: apk <your API key>' \
--data-raw '{
 "env_variables": {
 "VAULT_TOKEN": "<your token>"
 "VAULT_ADDR": "https://10.119.132.40:8200"
 }
}'

A response should be received similar to the lines below:

{
 "id": 2,
 "env_variables": {
 "VAULT_TOKEN": "<your token>"
 "VAULT_ADDR": "https://10.119.132.40:8200"
 }
}

Note the id of the vault, this will be needed in the next step to register the engine.

https://www.vaultproject.io/docs/auth/token
https://www.vaultproject.io/docs/auth/approle
https://www.vaultproject.io/docs/auth/cert
https://www.vaultproject.io/docs/commands
https://www.vaultproject.io/docs/auth/token
https://www.vaultproject.io/docs/auth/approle
https://www.vaultproject.io/docs/auth/cert
https://www.vaultproject.io/docs/commands

Data Control Tower – Data Control Tower Home

Deployment – 54

4.6.4.3 AppRole
To use the AppRole authentication method, this needs to be included as part the login_command_args field, as
shown below.

"login_command_args":
 ["write", "auth/approle/login", "role_id=1", "secret_id=123"]

The full example to register the vault would appear as:

curl --location --request POST 'https://<hostname>/v2/management/vaults/hashicorp' \
--header 'Content-Type: application/json' \
--header 'Accept: application/json' \
--header 'Authorization: apk <your API key>' \
--data-raw '{
 "env_variables": {
 "VAULT_ADDR": "https://10.119.132.40:8200"
 },
 "login_command_args":
 ["write", "auth/approle/login", "role_id=1", "secret_id=123"]
}'

 A response should be received similar to the lines below:

{
 "id": 2,
 "env_variables": {
 "VAULT_TOKEN": "<your token>"
 "VAULT_ADDR": "https://10.119.132.40:8200"
 }
}

4.6.5 TLS certificates
The configuration of mutual TLS authentication requires an additional step. This feature currently is NOT supported
for Kubernetes deployment of DCT. This will be covered in later releases.

4.6.5.1 Retrieving engine credentials
Once DCT can authenticate with the vault, it needs to know how to fetch the relevant engine credentials. When
registering an engine, the user will need to provide the HashiCorp CLI commands through the
hashicorp_vault_username_command_args and hashicorp_vault_password_command_args

parameters.

The relevant part of the engine registration payload will look like the following:

Data Control Tower – Data Control Tower Home

22 https://openresty.org/en/
23 https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Authorization

Deployment – 55

'{
 "hashicorp_vault_id": 1
 "hashicorp_vault_username_command_args": ["kv", "get", "-field=username", "kv-
v2/delphix-engine-secrets/engineUser"]
,
 "hashicorp_vault_password_command_args": ["kv", "get", "-field=password", "kv-
v2/delphix-engine-secrets/engineUser"]
}'

The hashicorp_vault_id will be the ID that was returned as part of the previous step. Note that the exact paths to
fetch the username and password will vary depending on the exact configuration of the vault.

4.7 Accounts: connecting/authenticating
There are 5 supported methods for authentication; API keys, Username/Password, LDAP/Active Directory, SAML/
SSO, and OpenID Connect. These authentication methods are detailed on the corresponding pages in this section.

4.7.1 API keys

4.7.1.1 API keys
API keys are the default method to authenticate with DCT. This is done by including the key in the HTTP
Authorization request header23 with type apk. A cURL example using an example key of
1.0p9PMkZO4Hgy0ezwjhX0Fi4lEKrD4pflejgqjd0pfKtywlSWR9G0fIaWajuKcBT3 would appear as:

curl --header 'Authorization: apk
1.0p9PMkZO4Hgy0ezwjhX0Fi4lEKrD4pflejgqjd0pfKtywlSWR9G0fIaWajuKcBT3'

DCT uses Nginx/OpenResty22 as an HTTP server and a reverse proxy for the application. Using the default
configuration, all connections to DCT are over HTTPS and require the user to authenticate. The Nginx/
OpenResty configuration files can be edited via /etc/config bind mounts, for the proxy container to
customize the HTTP server and change options (such as TLS versions).

cURL (like web browsers and other HTTP clients) will not connect to DCT over HTTPS unless a valid TLS
certificate has been configured for the Nginx server. If this configuration step(see page 71) has not been
performed yet and the risk is comprehended, you may disable the check in the HTTP client. For instance,
this can done with cURL using the --insecure flag. The cURL version must be 7.43 or higher.

https://openresty.org/en/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Authorization
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Authorization
https://openresty.org/en/

Data Control Tower – Data Control Tower Home

Deployment – 56

Create and manage API Keys

The initial API key created should be used to create a new admin secure key. This is done by creating a new Account
entity and setting the generate_api_key. The "username" attribute should be the desired name to uniquely identify
the account.

curl --location --request POST 'https://<hostname>/v2/management/accounts' \
--header 'Content-Type: application/json' \
--header 'Accept: application/json' \
--header 'Authorization: apk
1.0p9PMkZO4Hgy0ezwjhX0Fi4lEKrD4pflejgqjd0pfKtywlSWR9G0fIaWajuKcBT3' \
--data-raw '{
 "username": "secure-key",
 "generate_api_key": true
}'

A response should be received similar to the lines below:

{
 "id": 2,
 "token": "2.vCfC0MnpySYZLshuxap2aZ7xqBKAnQvV7hFnobe7xuNlHS9AF2NQnV9XXw4UyET6"
 "username":"secure-key"
}

Now that the new and secure API key is created, the old one must be deleted for security reasons since the key
appeared in the logs. To do this make the following request:

curl --location --request DELETE 'https://<hostname>/v2/management/api-clients/<id>'
 \
--header 'Content-Type: application/json' \
--header 'Accept: application/json' \
--header 'Authorization: apk
2.vCfC0MnpySYZLshuxap2aZ7xqBKAnQvV7hFnobe7xuNlHS9AF2NQnV9XXw4UyET6'

The id referenced above is the numeric id of the Account. It is the integer before the period in the token. For
example, the id of 1.0p9PMkZO4Hgy0ezwjhX0Fi4lEKrD4pflejgqjd0pfKtywlSWR9G0fIaWajuKcBT3
is 1.

Finally, to list all of the current Accounts, make the following request:

curl --location --request GET 'https://<hostname>/v2/management/accounts/' \
--header 'Content-Type: application/json' \
--header 'Accept: application/json' \
--header 'Authorization: apk <your API key>'

If the cURL version being used is below 7.43, replace the --data-raw option with --data.

Data Control Tower – Data Control Tower Home

24 https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Authorization

Deployment – 57

4.7.2 Username/password
When creating an account, a username and password combination can be associated with the account (whether an
API Key was generated for the account or not). To do so, specify the “username” and “password” properties in the
API request, for example:

curl -k --location --request POST 'https://<hostname>/v2/management/accounts' \
 --header 'Content-Type: application/json' \
 --header 'Accept: application/json' \
 --header 'Authorization: apk
1.0p9PMkZO4Hgy0ezwjhX0Fi4lEKrD4pflejgqjd0pfKtywlSWR9G0fIaWajuKcBT3' \
 --data-raw '{
 "username": "some-username",
 "password": "some-password",
 "generate_api_key": false
 "is_admin": true
}'

The username and password combination can then be used to login via the UI, or to fetch a temporary access token
valid for 24 hours. To do so, call the ‘login’ API endpoint:

curl -k --location --request POST 'https://<hostname>/v2/login' \
 --header 'Content-Type: application/json' \
 --header 'Accept: application/json' \
 --data-raw '{
 "username": "some-username",
 "password": "some-password"
}'

A response should be received similar to the lines below:

{
 "access_token":"eyJhbGciOiJIUzI1NiJ9.eyJpc3MiOiJhcGlndy1zZXJ2aWNlcy1hcHAiLCJzdWIi
OiI4IiwiZXhwIjoxNjYyNTUyMzI3LCJpYXQiOjE2NjI0NjU5MjcsInVzZXJuYW1lIjoic29tZS11c2VybmFtZ
SJ9.Cx_hGU9noyWS6mtK6gjsA85FTgJRQgyJizR5t_akNps",
 "token_type":"Bearer",
 "expires_in":86400
}

The access token can be used as HTTP Authorization request header24 with type Bearer. A cURL example using the
access token retrieved above would appear as:

The is_admin property will create the account with admin privileges. Remove this property to create an
account without admin privileges.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Authorization
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Authorization

Data Control Tower – Data Control Tower Home

Deployment – 58

curl --header 'Authorization: Bearer
eyJhbGciOiJIUzI1NiJ9.eyJpc3MiOiJhcGlndy1zZXJ2aWNlcy1hcHAiLCJzdWIiOiI4IiwiZXhwIjoxNjYy
NTUyMzI3LCJpYXQiOjE2NjI0NjU5MjcsInVzZXJuYW1lIjoic29tZS11c2VybmFtZSJ9.Cx_hGU9noyWS6mtK
6gjsA85FTgJRQgyJizR5t_akNps'

The password for an account can be updated with the change_password API endpoint, passing in both the old and
new passwords, such as in this example:

curl -k --location --request POST '<hostname>/v2/management/accounts/3/
change_password \
 --header 'Content-Type: application/json' \
 --header 'Accept: application/json' \
 --header 'Authorization: Bearer
eyJhbGciOiJIUzI1NiJ9.eyJpc3MiOiJhcGlndy1zZXJ2aWNlcy1hcHAiLCJzdWIiOiI4IiwiZXhwIjoxNjYy
NTUyMzI3LCJpYXQiOjE2NjI0NjU5MjcsInVzZXJuYW1lIjoic29tZS11c2VybmFtZSJ9.Cx_hGU9noyWS6mtK
6gjsA85FTgJRQgyJizR5t_akNps' \
 --data-raw '{
 "old_password": "some-password",
 "new_password": "new-password"
}'

Following security best practices, the password is not stored on DCT and cannot be retrieved. If the password has
been lost, an account with admin privilege can reset the password for a particular account. It is recommended to
change the password reset by an admin account on the first login, or with the change_password API, as described
above.

curl -k --location --request POST '<hostname>/v2/management/accounts/2/
password_reset' \
 --header 'Content-Type: application/json' \
 --header 'Accept: application/json' \
 --header 'Authorization: Bearer
eyJhbGciOiJIUzI1NiJ9.eyJpc3MiOiJhcGlndy1zZXJ2aWNlcy1hcHAiLCJzdWIiOiI4IiwiZXhwIjoxNjYy
NTUyMzI3LCJpYXQiOjE2NjI0NjU5MjcsInVzZXJuYW1lIjoic29tZS11c2VybmFtZSJ9.Cx_hGU9noyWS6mtK
6gjsA85FTgJRQgyJizR5t_akNps' \
 --data-raw '{
 "new_password": "new-password"
}'

In the above example, the admin is resetting the password of an account with id 2 to “new-password”.

4.7.2.1 Password policies
The password policy feature allows users to enable and customize the password policy enforced for local
username/password authentication (does not apply to LDAP/Active Directory or SAML/SSO based authentication).

4.7.2.2 Understanding password policies
The password policy is a set of requirements that local passwords must satisfy.

Data Control Tower – Data Control Tower Home

Deployment – 59

•
•

•
•
•
•
•
•

min_length: A password must be longer than this length.
reuse_disallow_limit: The user should not reuse old passwords. This tells the number of last used
passwords disallowed to be reused as the new passwords.
uppercase_letter: A password must have at least one capital letter.
lowercase_letter: A password must have at least one lower case letter.
digit: A password must have at least one digit.
special_character: A password must have at least one special character, such as #, $, !
disallow_username_as_password: A password should not be the same as the user name.
maximum_password_attempts: The number of allowed attempts for incorrect password, after which the
account gets locked.

4.7.2.3 Default password policy
By default, DCT does not enforce any password policy.

4.7.2.4 Changing the password policy
To change the current password policy, call the password policy API endpoint, as shown in the example below:

curl --location --request PATCH 'https://<hostname>/v2/management/accounts/password-
policies' \
--header 'Content-Type: application/json' \
--header 'Accept: application/json' \
--header 'Authorization: apk <your API key>' \
--data-raw '{
 "enabled": true,
 "maximum_password_attempts": 2,
 "min_length": 5,
 "reuse_disallow_limit": 3,
 "digit": true,
 "uppercase_letter": true,
 "lowercase_letter": true,
 "special_character": true,
 "disallow_username_as_password": true
}'

Changing the password policy does not affect existing passwords.

4.7.2.5 Disabling local username/password authentication
Username/password authentication (with passwords locally in DCT) can be disabled for individual accounts by not
setting or unsetting their password property, or across the DCT instance using the global properties API. Disable
username/password authentication to force authentication to use an alternate authentication method (LDAP/
Active Directory, SAML/SSO, etc.) as shown in this example:

curl --location --request PATCH 'https://<hostname>/v2/management/properties' \
--header 'Content-Type: application/json' \
--header 'Accept: application/json' \
--header 'Authorization: apk <your API key>' \

Data Control Tower – Data Control Tower Home

Deployment – 60

--data-raw '{"disable_username_password": true}'

4.7.3 LDAP/Active Directory

4.7.3.1 Configuration
LDAP/Active directory can be used to authenticate login requests, and optionally to retrieve additional information
about accounts, thereafter referred to as LDAP Search.

Configuring authentication

The following attributes must be set to configure LDAP/Active Directory authentication.

Property Name Description

enabled Whether the LDAP/Active Directory feature is enabled.

auto_create_users Whether DCT must automatically create account
records for successful authentication attempts using a
username which does not match any accounts.

If this is disabled, an administrator must create a DCT
account with an ldap_principal attribute matching the
value from the LDAP/Active Directory server prior to
the first login attempt.

If this is enabled, any user with valid credentials in the
LDAP/Active Directory server can authenticate to DCT,
by default with an empty authorization set (i.e not
being able to view any data or perform any action).

hostname The host name or IP address of the LDAP/Active
Directory server.

port Port of the LDAP/Active Directory server. This is
usually 389 for non SSL, and 636 for SSL.

enable_ssl Whether the connection to the LDAP/Active Directory
server must be performed over SSL. It is highly advised
to use SSL. Without SSL, communication between DCT
and the LDAP/Active server can be intercepted.

insecure_ssl, unsafe_ssl_hostname_check,
trustore_file_name, truststore_password

The SSL protocol requires the LDAP/Active Directory
server to expose a certificate signed by a Certificate
Authority (CA) trusted by the JDK which is running
DCT. Refer to the dedicated section below to see how
to configure an Active Directory/LDAP server of which
certificate is not recognized.

Data Control Tower – Data Control Tower Home

25 mailto:john@mycompany.co

Deployment – 61

Property Name Description

[domains].msad_domain_name Microsoft Active Directory only: The DNS name of a
domain in the same forest as the accounts which
login. DCT will append the msad_domain_name to the
username provided at login to form a user principal
name (UPN).

Example: if the msad_domain_name is http://
mycompany.co and a user logs in with username john,
DCT will perform an LDAP request to the Active
Directory server to authenticate
john@mycompany.co25.

[domains].username_pattern If the LDAP server is not Microsoft Active Directory, the
username_pattern is used to create a DN string for
user authentication. The pattern argument {0} is
replaced with the username at runtime.

Example: If the username_pattern is
uid={0},ou=People and a user logs in with username
john, DCT will perform an LDAP request with DN
uid=john,ou=People.

The LDAP/Active Directory Integration can be configured both via DCT UI and API. The below image shows an
example of how the configuration can be set in the UI as a way to Authenticate users, auto create new users, as well
as map group attributes for authorization within the DCT Access Control system.

mailto:john@mycompany.co
http://mycompany.co
mailto:john@mycompany.co

Data Control Tower – Data Control Tower Home

26 http://activedirectory.company.co
27 http://us.company.co

Deployment – 62

The following example requests enable LDAP authentication over SSL with an Active Directory server at address
activedirectory.company.co26 using the us.company.co27 domain:

http://activedirectory.company.co
http://us.company.co
http://activedirectory.company.co
http://us.company.co

Data Control Tower – Data Control Tower Home

Deployment – 63

curl --location --request PUT 'https://<hostname>/v2/management/ldap-config' \
--header 'Content-Type: application/json' \
--header 'Accept: application/json' \
--header 'Authorization: apk <your API key>' \
--data-raw '{
 "enabled": true,
 "auto_create_users": true,
 "hostname": "activedirectory.company.co",
 "enable_ssl": true,
 "port": 636,
 "domains":[{
 "msad_domain_name":"us.company.co"
 }]
}'

Validating the configuration

Updating the LDAP/Active Directory configuration does not guarantee that the provided values are correct, as
validating those requires a user to authenticate to DCT. This can be achieved with the ldap-config/validate API
endpoints, using the credentials valid for the LDAP/Active Directory server. When provided with a username/
password combination, the ldap-config/validate API endpoint will authenticate with the LDAP server. If the
response status code is 200, the configuration is correct. Otherwise, the response code will be 400, and the
response body will provide information to resolve the configuration problems. For example:

curl --location --request POST 'https://<hostname>/v2/management/ldap-config/
validate' \
--header 'Content-Type: application/json' \
--header 'Accept: application/json' \
--header 'Authorization: apk <your API key>' \
--data-raw '{
 "username": "<ldap-username>",
 "password": "<ldap-password>"
}'

Login

One the configuration has been updated, accounts can login (via the UI or API) using the same UI form/API endpoint
they would be using for the local username/password authentication feature. For example:

curl -k --location --request POST 'https://<hostname>/v2/login' \
--header 'Content-Type: application/json' \

Because of a defect in version 3.0.0 of DCT, the above request might fail with a response similar to:

search failed for john.doe with search base null' ,search attribute

'null'

This indicates that authentication works, and search (see below) is not configured.

Data Control Tower – Data Control Tower Home

Deployment – 64

•

--header 'Accept: application/json' \
--data-raw '{
 "username": "<ldap-username>",
 "password": "<ldap-password>"
}'

When LDAP/Active directory is enabled, DCT first attempts to validate passwords with the LDAP/Active Directory
server, and falls back to local password authentication in case of failure. Enabling LDAP/Active directory is thus a
non disruptive operation for existing accounts.

In order to force a transition to LDAP/Active Directory only password authentication, the DCT administrator must
either update the account records to remove the password, or disable local password authentication entirely.

4.7.4 SAML/SSO
The SAML 2.0 protocol allows DCT to delegate authentication to a SAML 2.0 compatible Identity Provider (Active
directory federation services, Azure active directory, Ping federate, Okta, OneLogin, etc.). It only applies to web
browser based interaction, and cannot be used for API access (scripting, integration).

Setting up SAML/SSO requires configuration changes both in the Identity Provider and DCT, so that trust can be
established across both products.

When using SAML/SSO, DCT will uniquely identify accounts by email address, so make sure that records at the
identity provider are configured with a unique email address.

DCT supports automatic account creation (or just in time account provisioning) when using SAML/SSO. When
automatic account creation is enabled, accounts are created automatically when users login for the first time.

DCT allows group membership to be retrieved from the Identity Provider, which can be used to control access
control authorization within DCT via DCT Access Groups. Using Identity Provider group membership allows DCT
authorization to be managed per account group, and guarantees that authorizations in DCT reflect the organization
structure which is expressed by group membership of the identity provider.

SAML/SSO is not mutually exclusive with other authentication methods, so enabling SAML/SSO is not disruptive
(accounts configured with local password or LDAP/Active Directory authentication can still authenticate). In order
to switch to SAML/SSO exclusively as authentication method for web browser interaction, perform the SAML/SSO
configuration steps below and disable LDAP/Active Directory and Username/Password authentication. Note that
API Key based authentication cannot be entirely disabled, but only administrators can create accounts with API
keys.

4.7.4.1 Identity provider setup
Require that an administrator of the Identity provider used by your organization sets up a SAML 2.0 integration with
DCT (an integration is sometimes called a Relying party trust, or an application).

The exact instructions are product specific, but the following input values must be provided:

Name Alternative name depending
on product

Value

Data Control Tower – Data Control Tower Home

Deployment – 65

•

•
•
•
•
•
•

•
•

•

Single Sign-on URL SAML Assertion Consumer
Service
ACS
Recipient URL
Destination URL
Relying party SAML 2.0 SSO
Service URL
Reply URL

https://<dct-hostname>/v2/saml/
SSO

Audience URI SP Entity ID
Relying Party trust identifier

Any value can be selected, as long
as the same value is set in the
Identify Provider configuration and
DCT configuration. We
recommend:

https://<dct-hostname>

Binding POST

Protocol SAML 2.0 WebSSO protocol

The identity provider must be configured to include the email address as NameId attribute, and DCT will use the
email attribute as a unique identifier for users when connecting via SAML/SSO.

4.7.4.2 DCT SAML/SSO setup
Once the configuration has been performed at the Identity provider, use the saml-config API endpoint to configure
DCT accordingly. If DCT has network access to the Identity Provider server, and the Identity Provider provides a
“metadata URL”, you can point DCT directly to the metadata URL. Otherwise, for instance when a firewall blocks
network access from DCT to the Identity Provider, copy the metadata from the Identity Provider using a web
browser and provide it directly to DCT.

The Identity provider (IDP) metadata is a standardized XML document providing the SAML Service Provider (DCT)
with the necessary information to verify the validity of incoming login requests and initiate a SAML/SSO login flow.

The metadata URL is sometimes called “App Federation Metadata URL”, and is sometimes only known by reading
the Identity Provider’s product documentation (for instance Active Directory Federation Services, or ADFS,
publishes the metadata URL at https://<hostname>/federationmetadata/2007-06/federationmetadata.xml).

If auto_create_users is enabled, DCT will create accounts automatically when they login with SAML/SSO for
the first time. If this is disabled, an administrator must create a DCT account with an email attribute matching the
value from the SAML/SSO Identity provider before they can login. When auto_create_users is enabled, any user
configured to authenticate via the Identity provider can authenticate to DCT, by default with an empty
authorization set (i.e not being able to view any data or perform any action).

Example 1: With network access, point DCT to the metadata URL.

curl --location --request GET 'https://<hostname>/v2/management/saml-config' \
--header 'Content-Type: application/json' \
--header 'Accept: application/json' \
--header 'Authorization: apk <your API key>' \

Data Control Tower – Data Control Tower Home

28 https://stedolan.github.io/jq/

Deployment – 66

--data-raw '{
 "enabled": true,
 "auto_create_users": true,
 "metadata_url": "<idp-metadata-url>",
}'

Example 2: Without network access, provide the IDP metadata directly.

curl --location --request PUT 'https://<hostname>/v2/management/saml-config' \
--header 'Content-Type: application/json' \
--header 'Accept: application/json' \
--header 'Authorization: apk <your API key>' \
--data-raw '{
 "enabled": true,
 "auto_create_users": true,
 "metadata": "<json-escaped-idp-metata-xml-blob>",
}'

4.7.4.3 Login
The SAML 2.0 protocol defines two login procedures: The Service Provider initiated flow starts by having users point
their web browser to https://<dct-hostname>/v2/saml/login to login, while the Identity provider
initiated flow starts at the Identity provider (details specific to Identity provider vendor). DCT supports both flows.
The SAML/SSO authentication method is not intended for API interaction, and cannot be used with the Swagger UI.

After successful authentication, the web browser is redirected to the UI landing page and the the navigation bar can
be used to go to the desired page. The session expires 24 hours after login.

4.7.4.4 Troubleshooting
There was an issue in SAML authentication: The assertion cannot be used before <timestamp>

The above error message, which is accompanied by com.coveo.saml.SamlException: The assertion cannot be
used before <timestamp> error in the application logs, indicates that DCT was not able to validate the timestamp of
the authentication provided by the Identity Provider. This is usually due to the system clock of the machine running
DCT being incorrectly configured. Consider using NTP to maintain the machine’s clock up to date.

There was an error fetching data

The above error message indicates that the current account does not have permission to view the data displayed on
the page. Remember that, while DCT creates accounts automatically upon login when auto_create_users is
enabled, by default accounts are created without any authorization and thus cannot see any data. Review the
section below to see how SAML/SSO group membership can be assigned automatically at account creation.

The IDP metadata must be JSON escaped. On a terminal with ./jq28 installed, this can be achieved with
the following command: jq --slurp --raw-input <<< 'xml-metadata-here'

https://stedolan.github.io/jq/
https://stedolan.github.io/jq/

Data Control Tower – Data Control Tower Home

Deployment – 67

4.8 Configure LDAP/Active Directory groups
In addition to being an authentication method, the LDAP/Active Directory integration can optionally also be used to
retrieve additional attributes about the accounts authenticating: first name, last name, email address and group
membership.

DCT only supports retrieving groups which are exposed as an attribute of the LDAP/Active Directory user record.
DCT can not fetch groups membership from group records at the LDAP/Active Directory, and thus also does not
support nested groups.

Group memberships are retrieved at authentication time, using the account credentials. DCT does not need
credentials of an LDAP/Active Directory administrator, but will only be able to retrieve group memberships if LDAP/
Active Directory users have the right to read the corresponding attribute.

This can be enabled by setting additional arguments to the domain API object.

search_base The Context name in which to search. Being specific
enables faster LDAP search.

To construct the search_base DN string according to
your LDAP/Active Directory server, using an LDAP
browser, navigate to a user, and then construct the
search_base DN in reverse order from the User, up the
folder hierarchy. For example:

If a User DN is:

CN=some-user-id,CN=Users,DC=mycompany,DC=co

The corresponding search base might be:

CN=Users,DC=mycompany,DC=co

email_attr Name of the attribute in the LDAP/Active Directory
server containing email addresses.

Example: mail

last_name_attr Name of the attribute in the LDAP/Active Directory
server containing last names

Example: sn

first_name_attr Name of the attribute in the LDAP/Active Directory
server containing first names

Example: givenName

group_attr Name of the attribute in the LDAP/Active Directory
server containing group(s) membership. This can be a
multi-valued attribute.

Example: memberOf

Data Control Tower – Data Control Tower Home

29 http://activedirectory.company.co
30 http://us.company.co

Deployment – 68

search_attr Name of the attribute in the LDAP/Active Directory
server of which value corresponds to the username
provided to the DCT login requests.

For Active Directory, this is usually sAMAccountName.

Example: If the search base is
CN=Users,DC=mycompany,DC=co and the
search_attr is principalName, DCT will search for a
record with a principalName matching the username
provided to the login request under the
CN=Users,DC=mycompany,DC=co sub tree.

object_class_attr Restricts search to records with an objectClass
matching this value.

Example: person

4.8.1 Active Directory example
The following requests enable LDAP authentication over SSL with an Active Directory server at address
activedirectory.company.co29, using the us.company.co30 domain, and configures optional attributes to retrieve
first name, last name, email address, and group membership from the users sub-tree.

curl --location --request PUT 'https://<hostname>/v2/management/ldap-config' \
--header 'Content-Type: application/json' \
--header 'Accept: application/json' \
--header 'Authorization: apk <your API key>' \
--data-raw '{
 "enabled": true,
 "auto_create_users": true,
 "hostname": "activedirectory.mycompany.co",
 "enable_ssl": true,
 "port": 636,
 "domains":[{
 "msad_domain_name":"mycompany.co",
 "search_base":"CN=Users,DC=mycompany,DC=co",
 "email_attr": "mail",
 "first_name_attr": "givenName",
 "last_name_attr": "sn",
 "group_attr": "memberOf",
 "object_class_attr":"person",
 "search_attr": "sAMAccountName"
 }]
}'

http://activedirectory.company.co
http://us.company.co
http://activedirectory.company.co
http://us.company.co

Data Control Tower – Data Control Tower Home

31 mailto:john@mycompany.co

Deployment – 69

1.

2.

3.
4.

With the above config, when a user logs in with username John, DCT will:

Authenticate with the Active Directory server using the user principal name john@mycompany.co31 and
supplied password.
Search in the CN=Users,DC=mycompany,DC=co sub tree a record with objectClass=person and
sAMAccountName=john.
Create or update a DCT Account record with the attributes extracted from the Active Directory server.
For each group membership found in the memberOf of the Active Directory server, an account tag is
created with key=login_groups and value is the group name. These tags are protected (i.e cannot be
modified within DCT) and can be securely used to control access groups membership.

As explained above, the ldap-config/validate API endpoint can be used to validate that each of the attributes
corresponding to LDAP/Active Directory attributes.

4.8.2 Attributes mapping
As explained above, the only required attribute in the SAML Response (the message sent by the Identity Provider to
DCT during login) is the NameId attribute which must be configured to a unique email address.

In addition to this, DCT allows for first name, last name, and group membership attributes to be included. The first
and last names attributes will be stored as properties of the account object. For each group membership found in
the SAML response attribute, an account tag is created with key=login_groups and value is the group name. These
tags are protected (i.e cannot be modified within DCT) and can be securely used to control access groups
membership.

In other to enable these optional attributes, update the Identity provider configuration to include them in the SAML
response, and use the saml-config API endpoint to configure DCT with the name of the attributes configured in the
Identity provider:

curl --location --request PUT 'https://<hostname>/v2/management/saml-config' \
--header 'Content-Type: application/json' \
--header 'Accept: application/json' \
--header 'Authorization: apk <your API key>' \
--data-raw '{
 "enabled": true,
 "auto_create_users": true,
 "metadata": "<json-escaped-idp-metata-xml-blob>",
 "first_name_attr": "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/
givenname",
 "last_name_attr": "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/surname",
 "group_attr": "http://schemas.xmlsoap.org/claims/Group"
}'

With the above configuration, and a SAML Response as the following produced by the Identity Provider during login:

<?xml version="1.0" encoding="UTF-8"?>
<saml2:Assertion ID="id97923983167603821157180516" IssueInstant="2022-12-01T10:07:12.
856Z" Version="2.0"
 xmlns:saml2="urn:oasis:names:tc:SAML:2.0:assertion">

mailto:john@mycompany.co
mailto:john@mycompany.co

Data Control Tower – Data Control Tower Home

Deployment – 70

 <saml2:Issuer Format="urn:oasis:names:tc:SAML:2.0:nameid-format:entity">http://
www.idp-demo.com/exk1fupjwz1YcMo290h8</saml2:Issuer>
 <saml2:Subject>
 <saml2:NameID Format="urn:oasis:names:tc:SAML:1.1:nameid-format:unspecified">
john.doe@company.co</saml2:NameID>
 <saml2:SubjectConfirmation Method="urn:oasis:names:tc:SAML:2.0:cm:bearer">
 <saml2:SubjectConfirmationData NotOnOrAfter="2022-12-01T10:12:12.857Z"
 Recipient="https://localhost/v2/saml/SSO"/>
 </saml2:SubjectConfirmation>
 </saml2:Subject>
 <saml2:Conditions NotBefore="2022-12-01T10:02:12.857Z" NotOnOrAfter="2022-12-01T1
0:12:12.857Z">
 <saml2:AudienceRestriction>
 <saml2:Audience>https://dct-demo.delphix.com</saml2:Audience>
 </saml2:AudienceRestriction>
 </saml2:Conditions>
 <saml2:AuthnStatement AuthnInstant="2022-12-01T10:05:07.916Z" SessionIndex="id166
9889232855.2084756273">
 <saml2:AuthnContext>
 <saml2:AuthnContextClassRef>urn:oasis:names:tc:SAML:2.0:ac:classes:Passwo
rdProtectedTransport</saml2:AuthnContextClassRef>
 </saml2:AuthnContext>
 </saml2:AuthnStatement>
 <saml2:AttributeStatement>
 <saml2:Attribute Name="http://schemas.xmlsoap.org/ws/2005/05/identity/claims/
givenname" NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:unspecified">
 <saml2:AttributeValue
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:type="xs:st
ring">John
 </saml2:AttributeValue>
 </saml2:Attribute>
 <saml2:Attribute Name="http://schemas.xmlsoap.org/ws/2005/05/identity/claims/
surname" NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:unspecified">
 <saml2:AttributeValue
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:type="xs:st
ring">Doe
 </saml2:AttributeValue>
 </saml2:Attribute>
 <saml2:Attribute Name="http://schemas.xmlsoap.org/claims/Group" NameFormat="u
rn:oasis:names:tc:SAML:2.0:attrname-format:unspecified">
 <saml2:AttributeValue
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:type="xs:st
ring">Dev-Team
 </saml2:AttributeValue>
 <saml2:AttributeValue
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:type="xs:st
ring">QA
 </saml2:AttributeValue>
 </saml2:AttributeStatement>

Data Control Tower – Data Control Tower Home

Deployment – 71

•

•

</saml2:Assertion>

Would automatically create or update a DCT account with the following properties:

{
 "id": 94,
 "username": "john.doe@company.co",
 "firstName": "John",
 "lastName": "Doe",
 "email": "john.doe@company.co",
 "tags": [
 {
 "key": "login_groups",
 "value": "Dev-Team"
 },
 {
 "key": "login_groups",
 "value": "QA"
 }
]
 }

4.9 Replace HTTPS certificate for DCT
By default, to enable HTTPS, DCT creates a unique self-signed certificate when starting up for the first time. This
certificate and private key are configured in the values.yaml file under:

proxy:
 crt:<certificate_value>
 key:<key_value>

To use your own certificates, these default values need to be replaced. They are Base64 encoded values of the
certificate and key, respectively.

To generate the Base64 encoded value of the certificate:
cat mycertfile.pem | base64 -w 0

To generate the Base64 encoded value of the key:
cat mykey.key | base64 -w 0

Generating a new TLS certificate and key could require the assistance of your Security or IT departments. A new key
pair (public and private key) will need to be created, in addition to a certificate signing request (CSR) for that key
pair. Your IT department should be able to determine the correct certificate authority (CA) to sign the CSR and
produce the new certificate. The common name of the certificate should match the fully qualified domain name
(FQDN) of the host, as well as the FQDN as a Subject Alternative Name (SAN).

Data Control Tower – Data Control Tower Home

Deployment – 72

•
•
•

4.10 External database support

4.10.1 Overview
DCT uses a PostgreSQL database to store all the persistent data powering the application (engines, VDBS,
compliance jobs, accounts, permissions, etc.). By default, a PostgreSQL container image is packaged along with the
DCT application and deployed along other pods onto the Kubernetes cluster, storing its persistent data into the
gwdatabase-data persistent volume.

Alternatively, DCT can be configured to use an external PostgreSQL database instead, to which DCT connects over
TCP and can then run anywhere (typically outside of the Kubernetes cluster).

4.10.2 Requirements
Database type: PostgreSQL
Min supported version: 13.4
Max supported version: 14.7

4.10.3 Setup

4.10.3.1 PostgreSQL database setup
The following databases must be created prior to connecting DCT: app, jobs, data-library, and bookmarks.

A PostgreSQL user must be created for DCT, with either the admin privilege or ALL privilege on the above databases.
The following SQL script exemplifies the creation of required databases, granting privileges to a pre-existing
dct_user (role) user.

Shell

CREATE DATABASE "bookmarks";
GRANT ALL PRIVILEGES ON DATABASE "bookmarks" TO dct_user;

CREATE DATABASE "data-library";
GRANT ALL PRIVILEGES ON DATABASE "data-library" TO dct_user;

CREATE DATABASE "jobs";
GRANT ALL PRIVILEGES ON DATABASE "jobs" TO dct_user;

External database support is only available for Kubernetes and OpenShift deployments. Docker Compose
installations are not eligible.



Quotes must be used to create or connect to the "data-library" databases, since its name contains a
hyphen (-). Creating the database with a different name (such as data_library) will NOT work.



Data Control Tower – Data Control Tower Home

Deployment – 73

CREATE DATABASE "app";
GRANT ALL PRIVILEGES ON DATABASE "app" TO dct_user;

4.10.3.2 DCT setup

Edit the values.yaml file to set useExternalDatabase to true, and also provide the dbHost , dbPort ,

dbUser , and dbPassword , then run the following.

Shell

helm upgrade -f values.yaml dct-services delphix-dct

4.10.4 Backup and recovery
When using an external database, the gwdatabase-data persistent volume (created at default by DCT) to store
database data is not used. Backing up and restoring the external database is not managed by DCT. Frequent or
continuous backups are required, otherwise, DCT data will be lost.

The gateway-data persistent volume must still be backed up because it contains an encryption key, which is
used to encrypt sensitive data at the application-level, before being sent to the database. A backup of the external
database cannot be restored successfully without a corresponding backup of gateway-data , as DCT would not

be able to decrypt some of the data in the database. The encryption key in gateway-data does not change after
having been initially created, so backups of it do not need to be scheduled at the same time as database backups.

Previous versions of DCT required the aforementioned properties to be base64 encoded, but the values
must be plain text values, as shown in the following excerpt:
useExternalDatabase: true

dbHost: "database-host.company.co"

dbPort: 5432

dbUser: "dct_user"

dbPassword: "dct_user_password"



If the password is stored as exemplified above in the values.yaml file, make sure to store this file in a
secure location. Alternatively, set the value using the --set option flag in the helm upgrade command, as
shown in the following excerpt:
helm upgrade -f values.yaml --set dbPassword=dct_user_password dct-

services delphix-dct



Data Control Tower – Data Control Tower Home

Deployment – 74

1.
2.
3.
4.

4.10.5 External database migration or upgrade
The external database can be migrated to a different host, and/or upgraded to a different version at any time, as
long the version requirements above are met. If the database is unavailable for a period of time, the DCT application
will temporarily fail (internal server errors on all API calls), but will recover automatically without the need for a
restart. However, in case of planned maintenance, upgrade, or migration, the following procedure should be
followed:

Stop (shutdown) the DCT application.
Upgrade or migrate the database.
If necessary, set the updated database properties in values.yaml, and run helm upgrade .
Start the DCT application.

4.10.6 DCT upgrade
Before upgrading to a new DCT version, review the documentation to identify if the external database version is
compatible. If the external database version is unknown, call the metadata-database API endpoint to get the
information.

curl -k --location --request GET 'https://<dct-server>/v3/management/metadata-
database' \
--header 'Accept: application/json' \
--header 'Authorization: apk <api-key>'

{
 "external": false,
 "version": "14.7",
 "database_product_name": "PostgreSQL",
 "major_version": 14,
 "minor_version": 7,
 "min_supported_major_version": 13,
 "min_supported_minor_version": 4,
 "max_supported_major_version": 14,
 "max_supported_minor_version": 7,
 "compatible": true
}

If the version of the external database is not compatible with the requirements of the DCT version being upgraded
to, follow the instructions in the External database migration or upgrade section above before upgrading.

After the upgrade, verify if the external database is compatible with DCT by inspecting the compatible property

of the metadata-database API endpoint (as shown above).

The selected PostgreSQL version to upgrade to must be compatible with both the currently running DCT
version and the upgrade version.

Data Control Tower – Data Control Tower Home

Deployment – 75

4.11 DCT data backup and recovery

4.11.1 Data backup of Persistent Volumes used by DCT
Based on customer need or backup policy, they need to take a backup of data in Persistent Volumes. In DCT,
gateway and database services are using Persistent Volume hence customer need to take backup of data folder
mounted on mounted path.

Take the backup (copy) of the data folders for the gateway Persistent Volume:

kubectl cp {gateway_pod_name}:/data data -n dct-services

Take the backup (copy) of the data folders for the database Persistent Volume:

kubectl cp {database_pod_name}:/var/lib/postgresql/data/ dct_database -n dct-services

4.11.2 Restore data backup in a new DCT setup
Deploy DCT services with the same version for which data back-up was taken. This deployment will create a new
Persistent Volume data folder for the cluster.

Use the following steps to copy the backup data in this new deployment.

First, stop all services.

Terminate proxy pod to stop serving external traffic:

kubectl scale --replicas=0 deployment/proxy -n dct-services

Terminate the database to stop internal threads using the database:

kubectl scale --replicas=0 deployment/database -n dct-services

Terminate the gateway to stop using Persistent Volume data:

kubectl scale --replicas=0 deployment/gateway -n dct-services

Create a dummy pod to access the Persistent Volume using pod.yaml, as shown below.

•
•

This method is only applicable for Kubernetes and OpenShift.
For Kubernetes, use the kubectl command prefix.
For OpenShift, use the oc command prefix.



Data Control Tower – Data Control Tower Home

Deployment – 76

apiVersion: v1
kind: Pod
metadata:
Namespace: dct-services
name: dummy-pod
 labels:
 app: dummy-pod
spec:
 containers:
 - image: ubuntu
 command:
 - "sleep"
 - "604800"
 imagePullPolicy: IfNotPresent
 name: ubuntu
 restartPolicy: Always
 volumes:
 - name: gwdatabase-data
 persistentVolumeClaim:
 claimName: gwdatabase-data

Create the dummy pod with:

kubectl apply -f pod.yaml -n dct-services

Copy the backup Persistent Volume data into a new cluster.

Move the encryption key:

kubectl cp data dct-services/{gateway_pod_name}:/data

Move the Postgres data:

kubectl cp dct_database dct-services/{dummy_pod_name}:/var/lib/postgresql/data

Delete the dummy pod.

kubectl delete pod dummy-pod -n dct-services

Start the database pod (scale to 1):

kubectl scale --replicas=1 deployment/database -n dct-services

Restart all services.

Data Control Tower – Data Control Tower Home

32 https://splunkbase.splunk.com/app/3743
33 https://faun.pub/logging-in-kubernetes-using-splunk-c2785948fdc0

Deployment – 77

Delete or patch the gateway pod:

kubectl delete pod {gateway_pod_name} -n dct-services

Delete or patch the data-library pod:

kubectl delete pod {data-library_pod_name} -n dct-services

Delete or patch the jobs pod:

kubectl delete pod {jobs_pod_name} -n dct-services

Delete or patch the data-bookmarks pod:

kubectl delete pod {data-bookmarks_pod_name} -n dct-services

Start the proxy service to serve the external service:

kubectl scale --replicas=1 deployment/proxy -n dct-services

4.12 Exporting DCT logs to Splunk

4.12.1 Overview
This article provides some tips for configuring DCT (running on Kubernetes) to send logs to Splunk and extract
useful information in Splunk.

4.12.2 Setting up a Splunk instance
Authenticate with Splunk via the web portal and install the third-party Monitoring Kubernetes32 app directly via the
Splunk UI, then enable HTTP Event Collector in Splunk and save the HTTP Event Collector token for future use.

4.12.3 Enable Splunk log forwarding
Once the Splunk instance is setup, follow the instructions to install Splunk logic in the Kubernetes cluster to
forward logs to Splunk. This blog post33 is a useful resources to understand the log collection and configuration
options.

https://splunkbase.splunk.com/app/3743
https://faun.pub/logging-in-kubernetes-using-splunk-c2785948fdc0
https://splunkbase.splunk.com/app/3743
https://faun.pub/logging-in-kubernetes-using-splunk-c2785948fdc0

Data Control Tower – Data Control Tower Home

Deployment – 78

git clone https://github.com/splunk/splunk-connect-for-kubernetes.git
cd splunk-connect-for-kubernetes/helm-chart/splunk-connect-for-kubernetes
edit values.yaml

Edit values.yaml, at the minimum the host property (hostname of the Splunk collector) and token (of the HTTP Even
Collector) must be set.

global:
 logLevel: info
 splunk:
 hec:
 # host is required and should be provided by user
 host: <insert-splunk-http-event-collector-hostname-here>
 # port to HEC, optional, default 8088
 port:
 # token is required and should be provided by user
 token: <insert-token-here>

Install the helm chart and and after a few minutes DCT logs will be visible in Splunk.

helm install splunk-connect-for-kubernetes . -f values.yaml --set splunk-kubernetes-
logging.fullnameOverride=splunk-logging

4.12.4 Search for events in Splunk
In the Splunk Cloud UI, via the “Monitoring Kubernetes” App, you can “search” for data sent by Kubernetes, as
exemplified in the screenshot below. The bootstrap API key can be found as shown.

Data Control Tower – Data Control Tower Home

Deployment – 79

The example screenshot below shows a search for \”nginx\”, with use of the “extract new fields” wizard on the
bottom left, which has Splunk parse the Nginx access logs. A regexp is used to name some of the fields like
ipaddress, endpoint, accountid, etc. The example runs a search to return API requests associated with accountid.

Data Control Tower – Data Control Tower Home

34 https://download.delphix.com/folder/1144/Delphix%20Product%20Releases/DCT

Deployment – 80

•
•

4.13 Generating a support bundle

4.13.1 Find the “collect_bundle.sh” script
The support bundle tar file is available on the downloads site34.
Once the file is downloaded, untar the file to find the script.

dlpxuser@delphix:~/test$ tar -xzvf dct-support-bundle-1.0.1.tar.gz
x ./
x ./collect_bundle.sh
x ./README
x ./VERSION

https://download.delphix.com/folder/1144/Delphix%20Product%20Releases/DCT
https://download.delphix.com/folder/1144/Delphix%20Product%20Releases/DCT

Data Control Tower – Data Control Tower Home

Deployment – 81

•

•

•

•

•

4.13.2 Execute the “collect_bundle.sh” script when DCT is running in Kubernetes
Transfer the "collect_bundle.sh" script to the machine where you have permissions to execute kubectl
commands against the DCT pods.

Execute the “collect_bundle.sh” script, which assumes a Kubernetes deployment by default. The script may
need to run with "sudo", if root permissions are needed to run the kubectl commands.
If the namespace is not the default "dct-services", use the "-n" flag and pass the correct namespace.

dlpxuser@delphix:~/test/tools/support-scripts/$./collect_bundle.sh -n
<custom_namespace>
....
DCT support bundle collection started at Thu Jun 22 12:35:05 EDT 2023
Collecting logs from all DCT containers...
....

4.13.3 Execute the “collect_bundle.sh” script when DCT is running in Docker-
Compose

Transfer the "collect_bundle.sh" script to the machine where you have permissions to execute docker
commands against the DCT Docker-Compose application.

Execute the “collect_bundle.sh” script with the "-d" parameter. The script may need to run with "sudo", if
root permissions are needed to run the docker commands.

dlpxuser@delphix:~/test/tools/support-scripts/$./collect_bundle.sh -d
...
DCT support bundle collection started at Thu Jun 22 12:35:05 EDT 2023
Collecting logs from all DCT containers...
....

4.13.4 Find the generated support bundle tar file
The resulting support bundle will be located at dct-support-****.tar.gz , inside the current directory.

dlpxuser@delphix:~/test$ ls -ltr
total 316
-rw-r--r-- 1 65436 staff 104189 Feb 17 08:52 dct-support-<current_timestamp>.tar.gz

The support bundle tar file contains the following information:

You must install the bash shell to generate a DCT support bundle, if it is not already.

You must install the bash shell to generate a DCT support bundle, if it is not already.

Data Control Tower – Data Control Tower Home

Deployment – 82

•
•
•
•
•
•

DCT logs for all of the containers.
A java heap dump, .hprof, if one exists.
A java thread dump and memory stats.
The output of docker stats, if running in Docker-Compose.
The output of cpuinfo, meminfo, and mpstat for each container, if running in Kubernetes.
The output of kubectl get pods -o json for each container, if running in Kubernetes.

•

•
•

The collect_bundle.sh generates a support bundle from a DCT engine running in Docker or
Kubernetes.
The resulting support bundle will be at ./dct-support-****.tar.gz inside the container.
The user must have privileges or permission to execute the docker or kubectl, commands in order
to generate the support bundle.



Data Control Tower – Data Control Tower Home

Data governance – 83

5 Data governance

5.1 DCT administration
DCT delivers a management layer on top of all connected Delphix engines through surfacing object inventories,
instrumenting all common Delphix operations, delivering a business metadata layer with tagging, and using those
tags to drive attribute-based access control. This provides the ability for administrators to deliver a highly curated
and secure Delphix experience for automation and end-users.

This section contains configurations handled under the Admin page in the DCT interface.

5.1.1 Tags

5.1.1.1 Tags management
DCT powers data governance with tags. These key-value pairs can be used to associate any business-level data with
any Delphix object, to drive greater intelligence in automation, administrative workflows, data access, and
reporting. Advanced search for tags is available.

Tags are individual attributes on every object exposed in DCT; from VDBs, to compliance jobs, and even users. There
are no limits on tag count per object and character limits are set for flexibility to enable robust grouping.

5.1.1.2 Administrative tagging
Tags can be managed from the UI by selecting “View Tags” for a particular object on its global list page. The below
example shows the tag configuration screen for a dSource “AGDatabaseSQL2016” and multiple tags have been
added to characterize that particular object:

Data Control Tower – Data Control Tower Home

Data governance – 84

DCT tags enable complex searching to enable intelligent reports. A demonstration using the above example
dSource and using expression-based search to filter dSources with the {App Team: Alpha} tag.

Data Control Tower – Data Control Tower Home

Data governance – 85

•

•

5.1.1.3 Tags powering attribute-based Access Control
Tags also power the DCT permissions system for both Accounts (users) and Role Scopes (object entitlements). The
below example shows an Access Group (Alpha Team) with the Accounts tab on display. Notice that the accounts tab
has {App Team: Alpha} under “tag mapping”, which automatically attributes any users with the {App Team: Alpha}
tag.

The same goes for Scoped Roles under the “Roles” tab. The Alpha Team role has been mapped to the {App Team:
Alpha} tag and all dSources with that same tag are automatically attributed.

5.1.2 Authentication
Authentication methods can be combined to accommodate the various types of workflows, whether they are web
based interaction for human beings, or automated interactions for third party software, scripting, etc. Please see
the individual pages in the Accounts: connecting/authenticating(see page 55) section under deployment for more
information.

API Keys: Each account can optionally be associated with an API key. The API key is a long string of
characters which does not automatically expire. API keys are typically used for machine to machine
communication. API key authentication can not be disabled.
Username/Password: Each account can optionally be associated with a username/password combination.
DCT stores passwords a cryptographic hash of the password and salt using the Bcrypt algorithm in its

Data Control Tower – Data Control Tower Home

Data governance – 86

•

•

•

internal database. The password policies feature of DCT can be used to define the minimum requirements of
valid passwords (min length, special characters requirements, etc.) and temporarily block accounts after
failed login attempts. Username/Password authentication can be disabled across the DCT instance via the
global properties feature, for instance when the company policy is to prefer delegated authentication (LDAP/
Active Directory/SAML/SSO).
LDAP/Active Directory: When using LDAP/Active Directory, API clients authentication with a username/
password combination, but DCT does not store the password locally in its internal database, and instead
connects over the LDAP protocol to validate passwords. More over, additional attributes such as first and
last name, email addresses and group membership can be read from the LDAP/Active directory system,
enabling access to DCT to be controlled via enterprise systems like directory services.
SAML/SSO: The SAML 2.0 protocol, implemented by DCT, allows web UI sessions to authenticate via an
enterprise identify provider (Active directory federation services, Azure active directory, Ping federate, Okta,
Onelogin, etc.). When using the SAML/SSO authentication method, DCT does not store any credentials in its
internal database, but instead delegates authentication to the identify provider, via web browser
redirection. The SAML/SSO protocol is only intended for web browser based interaction.
OpenID connect: OpenID connect (an extension of OAuth2.0) can be used for computer based systems
(scripts, integrations) to login to DCT, providing additional security over API keys.

5.1.3 Access groups
DCT Access Groups provides global user management and permissions for all objects within the connected
ecosystem. This entitlement authorization system is both managed and enforced for operations triggered through
DCT APIs and/or user interface.

5.1.3.1 Access Group structure
Access Groups represent a singular, global set of users and permissions. It operates as the point to manage access
and authorization for all users; both human users accessing the DCT UI, and automation by means of generating
API keys to leverage the DCT APIs.

Access Groups are comprised of two sets of configurable objects, accounts and roles.

This is mutually exclusive to the permissions system on local Continuous Data, Continuous Compliance,
and Self-Service applications. However, DCT’s system does enable users to operate on objects within
local engines, as DCT will perform those operations on the users behalf, if the user has the correct
permissions within DCT.

Data Control Tower – Data Control Tower Home

Data governance – 87

5.1.3.2 Accounts
Accounts represent generalized users; a human user, an API key, or both. An account can belong to multiple Access
Groups, but it is strongly recommended to maintain a dedicated Access Group for an account or group of accounts,
to prevent privilege creep. Accounts can be attributed to Access Groups via LDAP/Active Directory Group attributes,
DCT Account Tags, or manually adding accounts.

5.1.3.3 Roles
Roles can be considered a collection of permissions. Attributing a role into an Access Group first starts by
identifying a “mode”. DCT currently supports both simple and scoped modes for roles, with the plan to introduce
advanced mode in a subsequent release.

Simple mode is meant to apply general sets of permissions as universal, for all applicable types of objects. For
example, a simple mode with a “Monitor” set of permissions will give viewing rights for all VDBs, dSources,
environments, etc.

Scoped mode is more closely related to the Continuous Data Engine model of applying a set of permissions on
specific groups of applicable objects. For example, scoped mode with a “DevOps” set of permissions grants view,
refresh, provision, etc. permissions over the defined set of VDBs. Scoped roles can be automated.

In addition to modes, roles can be configured with role types. The current release only includes “standard” roles,
which are comprised of:

Access Groups can have any number of accounts and roles (e.g. a role pairing DevOps permission sets for
a subset of VDBs, and a role pairing Compliance permission sets for a subset of Compliance Jobs).

Data Control Tower – Data Control Tower Home

Data governance – 88

Admin role

DSOURCE/SNAPSHOT,VDB/MANAGE_TAGS,MASKING_JOB_SET/
SET_TAGS_AT_OBJECT_CREATION,BOOKMARK/SET_TAGS_AT_OBJECT_CREATION,VDB/
UPDATE,MASKING_JOB_SET/REMOVE_JOB,LDAP/VALIDATE,DSOURCE/
UPDATE,DSOURCE_CONSUMPTION_REPORT/READ,ENVIRONMENT/DISABLE,GLOBAL_PROPERTIES/
READ,VDB_GROUP/DELETE,GLOBAL_PROPERTIES/UPDATE,ACCOUNT/DELETE,DATABASE_TEMPLATE/
UPDATE,ENVIRONMENT/REFRESH,CDB/MANAGE_TAGS,VDB/CREATE,JOB/READ,DATABASE_TEMPLATE/
READ,REPORT_SCHEDULE/READ,VDB/PROVISION,DSOURCE/MANAGE_TAGS,VDB/
SNAPSHOT,STORAGE_SUMMARY_REPORT/READ,DSOURCE/PROVISION,SAML/UPDATE,VDB/
REFRESH,ACCOUNT/MANAGE_TAGS,ACCOUNT/PASSWORD_RESET,ENGINE/UPDATE,ACCOUNT/
READ,BOOKMARK/DELETE,REPORT_SCHEDULE/CREATE,VDB_GROUP/MANAGE_TAGS,PASSWORD_POLICY/
READ,VDB_GROUP/READ,VCDB/READ,MASKING_JOB/READ,CDB/READ,JOB/
ABANDON,CONNECTIVITY_CHECK/EXECUTE,MASKING_JOB_SET/COPY,API_CLASSIFICATION/
UPDATE,ENGINE/CREATE_ENVIRONMENT,ACCESS_GROUP/UPDATE,VDB/DELETE,VAULT/
DELETE,MASKING_JOB/DELETE,API_USAGE_REPORT/READ,MASKING_JOB_SET/UPDATE,DSOURCE/
READ,VDB_GROUP/CREATE,LDAP/UPDATE,ACCOUNT/CREATE,SMTP_CONFIG/VALIDATE,CONNECTOR/
UPDATE,VDB/READ,SMTP_CONFIG/READ,ENVIRONMENT/READ,ROLE/READ,SOURCE/
UPDATE,ENVIRONMENT/DELETE,ENVIRONMENT/CREATE,VDB/START,VDB/DISABLE,VAULT/
READ,VDB_GROUP/REFRESH,BOOKMARK/READ,DATABASE_TEMPLATE/IMPORT,DATABASE_TEMPLATE/
UNDO_IMPORT,ACCESS_GROUP/DELETE,VAULT/CREATE,VDB/ENABLE,ENGINE/
SET_TAGS_AT_OBJECT_CREATION,SOURCE/MANAGE_TAGS,BOOKMARK/UPDATE,VCDB/UPDATE,VDB/
SET_TAGS_AT_OBJECT_CREATION,DSOURCE_USAGE_REPORT/READ,SAML/READ,MASKING_JOB_SET/
MANAGE_TAGS,ENVIRONMENT/MANAGE_TAGS,REPORT_SCHEDULE/DELETE,DSOURCE/
REFRESH,DATABASE_TEMPLATE/DELETE,VDB/STOP,ACCOUNT/UPDATE,ENGINE/MANAGE_TAGS,BOOKMARK/
CREATE,PASSWORD_POLICY/UPDATE,MASKING_JOB_SET/DELETE,ACCESS_GROUP/READ,VDB_GROUP/
UPDATE,ENVIRONMENT/SET_TAGS_AT_OBJECT_CREATION,VDB/CREATE_VDBGROUP,DATABASE_TEMPLATE/
CREATE,VDB_GROUP/SET_TAGS_AT_OBJECT_CREATION,LDAP/READ,BOOKMARK/
REFRESH_FROM_BOOKMARK,REPORT_SCHEDULE/UPDATE,BOOKMARK/
PROVISION_FROM_BOOKMARK,ENVIRONMENT/ENABLE,VDB/CREATE_BOOKMARK,VCDB/
MANAGE_TAGS,MASKING_JOB/UPDATE,BOOKMARK/MANAGE_TAGS,VDB_INVENTORY_REPORT/READ,ENGINE/
CREATE,CONNECTOR/EXECUTE,ENVIRONMENT/UPDATE,PRODUCT_INFO/READ,SMTP_CONFIG/
UPDATE,ACCESS_GROUP/CREATE,ACCOUNT/SET_TAGS_AT_OBJECT_CREATION,CONNECTOR/
READ,API_CLASSIFICATION/READ,CDB/UPDATE,ENGINE/DELETE,MASKING_JOB_SET/READ,SOURCE/
READ,ENGINE/READ

Monitor role

BOOKMARK/READ,SMTP_CONFIG/UPDATE,PRODUCT_INFO/READ,API_USAGE_REPORT/READ,JOB/
READ,REPORT_SCHEDULE/CREATE,DSOURCE/READ,REPORT_SCHEDULE/READ,VDB_GROUP/
READ,SMTP_CONFIG/VALIDATE,VCDB/READ,DSOURCE_CONSUMPTION_REPORT/READ,SOURCE/
READ,DSOURCE_USAGE_REPORT/READ,CDB/READ,VDB/READ,REPORT_SCHEDULE/UPDATE,ENVIRONMENT/
READ,SMTP_CONFIG/READ,ENGINE/READ,STORAGE_SUMMARY_REPORT/READ,REPORT_SCHEDULE/
DELETE,VDB_INVENTORY_REPORT/READ

Data Control Tower – Data Control Tower Home

Data governance – 89

DevOps role

ENVIRONMENT/DELETE,ENVIRONMENT/CREATE,VDB/MANAGE_TAGS,VDB/START,BOOKMARK/
SET_TAGS_AT_OBJECT_CREATION,VDB/UPDATE,VDB/DISABLE,DSOURCE/UPDATE,ENVIRONMENT/
DISABLE,VDB_GROUP/DELETE,VDB_GROUP/REFRESH,BOOKMARK/READ,DATABASE_TEMPLATE/
UPDATE,ENVIRONMENT/REFRESH,DATABASE_TEMPLATE/IMPORT,CDB/
MANAGE_TAGS,DATABASE_TEMPLATE/UNDO_IMPORT,VDB/CREATE,VDB/ENABLE,SOURCE/
MANAGE_TAGS,ENGINE/SET_TAGS_AT_OBJECT_CREATION,JOB/READ,BOOKMARK/
UPDATE,DATABASE_TEMPLATE/READ,VCDB/UPDATE,VDB/SET_TAGS_AT_OBJECT_CREATION,VDB/
PROVISION,VDB/SNAPSHOT,DSOURCE/MANAGE_TAGS,ENVIRONMENT/MANAGE_TAGS,DSOURCE/
PROVISION,DSOURCE/REFRESH,DATABASE_TEMPLATE/DELETE,VDB/STOP,ENGINE/MANAGE_TAGS,VDB/
REFRESH,BOOKMARK/CREATE,VDB_GROUP/UPDATE,BOOKMARK/DELETE,VDB_GROUP/
MANAGE_TAGS,ENVIRONMENT/SET_TAGS_AT_OBJECT_CREATION,VDB/CREATE_VDBGROUP,VDB_GROUP/
READ,DATABASE_TEMPLATE/CREATE,VDB_GROUP/SET_TAGS_AT_OBJECT_CREATION,VCDB/READ,CDB/
READ,BOOKMARK/REFRESH_FROM_BOOKMARK,BOOKMARK/PROVISION_FROM_BOOKMARK,JOB/
ABANDON,ENVIRONMENT/ENABLE,VCDB/MANAGE_TAGS,VDB/CREATE_BOOKMARK,BOOKMARK/
MANAGE_TAGS,VDB/DELETE,ENVIRONMENT/UPDATE,PRODUCT_INFO/READ,DSOURCE/READ,VDB_GROUP/
CREATE,CDB/UPDATE,SOURCE/READ,VDB/READ,ENVIRONMENT/READ,ENGINE/READ,SOURCE/UPDATE

Masking role

PRODUCT_INFO/READ,MASKING_JOB/DELETE,ENGINE/UPDATE,MASKING_JOB_SET/DELETE,JOB/
READ,MASKING_JOB_SET/UPDATE,CONNECTOR/READ,ENGINE/DELETE,MASKING_JOB_SET/
REMOVE_JOB,MASKING_JOB_SET/READ,CONNECTOR/UPDATE,MASKING_JOB/READ,JOB/
ABANDON,MASKING_JOB_SET/COPY,ENGINE/READ,MASKING_JOB/UPDATE,CONNECTOR/EXECUTE,ENGINE/
CREATE

Owner role

ENVIRONMENT/DELETE,DSOURCE/SNAPSHOT,VDB/START,MASKING_JOB_SET/
SET_TAGS_AT_OBJECT_CREATION,BOOKMARK/SET_TAGS_AT_OBJECT_CREATION,VDB/
UPDATE,MASKING_JOB_SET/REMOVE_JOB,VDB/DISABLE,DSOURCE/UPDATE,ENVIRONMENT/
DISABLE,VDB_GROUP/DELETE,VAULT/READ,VDB_GROUP/REFRESH,BOOKMARK/READ,ACCOUNT/
DELETE,DATABASE_TEMPLATE/UPDATE,ENVIRONMENT/REFRESH,DATABASE_TEMPLATE/
IMPORT,DATABASE_TEMPLATE/UNDO_IMPORT,ACCESS_GROUP/DELETE,VDB/ENABLE,ENGINE/
SET_TAGS_AT_OBJECT_CREATION,BOOKMARK/UPDATE,DATABASE_TEMPLATE/READ,VCDB/UPDATE,VDB/
SET_TAGS_AT_OBJECT_CREATION,REPORT_SCHEDULE/READ,VDB/PROVISION,VDB/
SNAPSHOT,REPORT_SCHEDULE/DELETE,DSOURCE/PROVISION,DSOURCE/REFRESH,DATABASE_TEMPLATE/
DELETE,VDB/STOP,ACCOUNT/UPDATE,VDB/REFRESH,ACCOUNT/PASSWORD_RESET,ENGINE/
UPDATE,MASKING_JOB_SET/DELETE,ACCESS_GROUP/READ,VDB_GROUP/UPDATE,ACCOUNT/
READ,BOOKMARK/DELETE,ENVIRONMENT/SET_TAGS_AT_OBJECT_CREATION,VDB/
CREATE_VDBGROUP,VDB_GROUP/READ,VDB_GROUP/SET_TAGS_AT_OBJECT_CREATION,VCDB/
READ,MASKING_JOB/READ,CDB/READ,BOOKMARK/REFRESH_FROM_BOOKMARK,REPORT_SCHEDULE/
UPDATE,BOOKMARK/PROVISION_FROM_BOOKMARK,ENVIRONMENT/ENABLE,VDB/
CREATE_BOOKMARK,MASKING_JOB/UPDATE,ENGINE/CREATE_ENVIRONMENT,CONNECTOR/
EXECUTE,ACCESS_GROUP/UPDATE,VDB/DELETE,ENVIRONMENT/UPDATE,VAULT/DELETE,MASKING_JOB/
DELETE,ACCOUNT/SET_TAGS_AT_OBJECT_CREATION,MASKING_JOB_SET/UPDATE,DSOURCE/

Data Control Tower – Data Control Tower Home

Data governance – 90

•
•

•
•
•
•

READ,CONNECTOR/READ,CDB/UPDATE,ENGINE/DELETE,MASKING_JOB_SET/READ,CONNECTOR/
UPDATE,SOURCE/READ,VDB/READ,ENVIRONMENT/READ,ENGINE/READ,SOURCE/UPDATE

5.1.3.4 Example configuration scenario

In this scenario, a DCT administrator will configure a new Access Group “App Team Alpha” who’s membership will
include Accounts with the AD Group attribute CN=Alpha , CN=Teams , DC=delphix , DC=com as well as the
manual addition of a unaffiliated user. This Access group will be “scoped” to have permissions from the DevOps
role over all VDB’s with the {Team: Alpha} tag.

Data assumptions

To create access group with above requirements, let first assume few values to understand the API call:

Access group name is App Team Alpha
DevOps role name = "devops"

For AD users, one of the AD group attribute value is CN=Alpha , CN=Teams , DC=delphix , DC=com
Individual Account with account ID = 10
VDB with id = "1-VDB-DATASET-1"
Scope by object tag: {Team: Alpha}

Option one

Create an access group with all required roles and permissions as mentioned above in a single API call.

API: POST - https://<hostname>/v2/access-groups

Request Body:

{
 "name": "Team Alpha",
 "account_ids": [
 10
],
 "account_tags": [
 {
 "key": "login_groups",
 "value": "CN=Alpha, CN=Teams, DC=delphix, DC=com"
 }
],
 "policies": [
 {
 "role_id": "devops",

The subsequent DCT release will include the ability to create roles with custom sets of permissions.

Access Groups can only be configured and updated via API as of DCT 4.0. Users will have the ability to
perform these configuration steps within the DCT UI with the 5.0 release.

Data Control Tower – Data Control Tower Home

Data governance – 91

1.

 "everything": false,
 "object_tags": [
 {
 "key": "Team",
 "value": "Alpha"
 }
],
 "objects": [
 {
 "object_id": "1-VDB-DATASET-1",
 "object_type": "VDB"
 }
]
 }
]
}

Response: 201 - Created

Option two

Create the access group for above mentioned data/requirements by using different API calls as well. Do this using
multiple APIs.

Create Access Groups

API: POST - https://<hostname>/v2/access-groups

Request Body:

{
 "name": "Team Alpha"
}

Response: 201 - Created

The Access Group id will appear in the response, as shown:

{
 "id": "111111-2222-aaaa-bbbb-123456abcdef",
 "name": "Team Alpha",
 "single_account": false
}

2. Add account manually

API: POST - https://<hostname>/v2/access-groups/111111-2222-aaaa-

bbbb-123456abcdef/account-ids

Request Body:

Data Control Tower – Data Control Tower Home

Data governance – 92

{
 "account_ids": [
 10
]
}

Response: 200 - OK (Updated Access Group)

3. Add AD users automatically for the groups assumed above.

In order to add AD users automatically to this Access Group, we will need to create account tags matching with AD
groups as follows:

API: POST - https://<hostname>/v2/access-groups/111111-2222-aaaa-

bbbb-123456abcdef/tags

Request Body:

{
 "tags": [
 {
 "key": "login_groups",
 "value": "CN=Alpha, CN=Teams, DC=delphix, DC=com"
 }
]
}

Response: 200 - OK (Updated Access Groups)

4. Assign DevOps role to the Access Group.

For adding DevOps role, we will create a policy/scope for the access group as follows:

API: POST - https://<hostname>/v2/access-groups/111111-2222-aaaa-

bbbb-123456abcdef/policies

Request Body:

 "policies": [
 {
 "role_id": "devops",
 "everything": false
 }
]
}

Response: 200 - OK (Updated Access Groups)

5. Add tags to Scope/Policy of the Access Group.

Assume the created policyId/scopeId is 99999-2222-aaaa-bbbb-abced92dk3 .

Data Control Tower – Data Control Tower Home

Data governance – 93

API: POST - https://<hostname>/v2/access-groups/111111-2222-aaaa-

bbbb-123456abcdef/policies/99999-2222-aaaa-bbbb-abced92dk3/object-tags

Request Body:

{
 "tags": [
 {
 "key": "Team",
 "value": "Alpha"
 }
]
}

Response: 200 - OK

6. Add VDB manually.

To add VDB manually, use the below API:

API: POST - https://<hostname>/v2/access-groups/111111-2222-aaaa-

bbbb-123456abcdef/policies/99999-2222-aaaa-bbbb-abced92dk3/objects

Request Body:

{
 "objects": [
 {
 "object_id": "1-VDB-DATASET-1",
 "object_type": "VDB"
 }
]
}

Response: 200 - OK

5.1.3.5 User interface

Copy role scope

On the detail page of a role scope, an action is now available to copy it. The default name of the copied scape is
"Copy of [name of the original scope]", which can later be updated with the edit scope wizard. The list of scopes are
sorted by name, allowing for easy access in locating the created copy. To create a scope for a brand new role that is
not yet added to the Access Group, you must first add the role by editing the role tile on the left side of the scope
detail page.

Data Control Tower – Data Control Tower Home

Data governance – 94

Delete role scope

On the detail page of a role scope, an action is now available to delete it. The delete button is unavailable if the role
scope is the only one of that role. If the scope should still be deleted and the button is unavailable, you must use the
edit role wizard to remove the role entirely, ultimately deleting the role scope.

5.1.3.6 Advanced scope type
API Example:

curl --location --request POST '<hostname>/v3/access-groups/{access-group-id}/scopes/
{scopeId}/objects' \
--header 'Content-Type: application/json' \
--data-raw '{
 "objects": [

Data Control Tower – Data Control Tower Home

Data governance – 95

 {
 "object_id": "1",
 "object_type": "ACCOUNT",
 "permission" : "READ"
 }
]
}'

Add an always allowed object to Access Group scope
Always allowed objects can be defined as objects that are always allowed for an access group scope. This can be set
as follows:

Add always allowed objects:

curl --location --request POST '<hostname>/v3/access-groups/{access-group-id}/scopes/
{scope-id}/always_allowed_permissions' \--header 'Content-Type: application/json' \
--data-raw '{
 "always_allowed_permissions": [
 {
 "object_type": "ACCOUNT",
 "permission" : "READ"
 }
]
}'
Response: The updated access group scope

Here it means that all objects with object type ACCOUNT and permission READ are allowed with this access group
scope. This will clear out matching object type and permissions, if any in objects attribute of access group scope.

Remove always allowed objects:

curl --location --request POST '<hostname>/v3/access-groups/{access-group-id}/scopes/
{scope-id}/always_allowed_permissions/delete' \--header 'Content-Type: application/
json' \
--data-raw '{
 "always_allowed_permissions": [
 {
 "object_type": "ACCOUNT",
 "permission" : "READ"
 }
]
}'
Response: The updated access group scope

5.1.4 VDB templates

For additional detail on VDB templates, visit the “Configuration Settings for Oracle VDBs” article in the
Continuous Data Engine documentation.

Data Control Tower – Data Control Tower Home

Data governance – 96

•

•

•

•

DCT has implemented a global VDB template system to centrally manage and apply VDB templates for any and all
VDB provisioning workloads. This feature works as an extension of the local VDB template system on Continuous
Data Engines as a means of enforcing VDB configuration standards and policies uniformly.

DCT Admins have the choice of either importing pre-existing VDB templates from a local engine or creating net-new
templates from within DCT.

5.1.4.1 Creating templates
Users can create Database Templates directly via DCT, which can then be used on VDBs across their engines. The
DCT API interface for creating templates is equivalent to that of on-engines, requiring a name and sourceType, and
optionally taking in a description and the list of config parameters. Here’s a sample CURL command:

 curl -X 'POST' \
 '<https://<APPLIANCE_ADDRESS>/v2/database-templates'> \
 -H 'accept: application/json' \
 -H 'Authorization: <API_KEY>' \
 -H 'Content-Type: application/json' \
 -d '{
 "name": "vdb-config-template-1",
 "source_type": "OracleVirtualSource"
 "parameters": {"config1": "value1", "config2": "value2"}'}

This will result in a new DCT DatabaseTemplate object, which can then be viewed using the List/Get/Search APIs.

5.1.4.2 Importing templates
Unlike many other Delphix objects, DCT is not automatically pulling in all the Database Templates from registered
engines and creating DCT objects out of them. It is often the case that users have already made arrangements and
have copies of their templates across their engines. DCT does not blindly import the templates to avoid generating
duplicates, leading users to consolidating and clean up. Instead, DCT provides an import API that can be used to
selectively choose which engines they wish to import their templates from, along with an API to undo imports. The
import workflow has a couple of things to be aware of:

The user cannot be selective of which individual templates to import from an engine. The import API will pull
ALL templates from that engine.
Import is allowed only one time per Engine. After an initial import, subsequent imports will be blocked, and
it is assumed that a user will use the DCT APIs to create more templates.
In the event that an import was done on accident or no longer desired, the undo import API can be called to
delete all the imported templates from the selected engine. This will result in the removal of all DCT
Database Templates that were created as a result of the import.
If an imported template is later used on a VDB running on a different engine than where it was originally
imported from, then the undo import flow is also prohibited, as DCT can no longer safely delete a template
that is in use elsewhere.

Import templates from the engine:

curl -X 'POST' \
 'https://<APPLIANCE_ADDRESS>/v2/database-templates/import' \
 -H 'accept: */*' \
 -H 'Authorization: <API_KEY>' \

Data Control Tower – Data Control Tower Home

Data governance – 97

 -H 'Content-Type: application/json' \
 -d '{
 "engine_id": "3"
}'

Undo the imported templates from engine:

curl -X 'POST' \
 'https://<APPLIANCE_ADDRESS>/v2/database-templates/undo-import' \
 -H 'accept: */*' \
 -H 'Authorization: <API_KEY>' \
 -H 'Content-Type: application/json' \
 -d '{
 "engine_id": "3"
}'

5.1.4.3 Using templates
DCT Database Templates can be used by specifying the template_id property at VDB provisioning time, or by
updating the template_id on an existing VDB. In either case, DCT will deploy the template to the respective engine
and bind the template with the VDB. When a DCT Database Template currently in use is updated or deleted, those
changes are propagated to the respective VDBs and engines.

Updating a VDB to use template_id:

curl -X 'PATCH' \
 'https://<APPLIANCE_ADDRESS>/v2/vdbs/1-ORACLE_DB_CONTAINER-1' \
 -H 'accept: application/json' \
 -H 'Authorization: <API_KEY>' \
 -H 'Content-Type: application/json' \
 -d '{
 "template_id": "319db966-961c-4977-a444-14d337aa3276"
}'

If a VDB has the same parameter called out in both VDB template and individual setting, the value
specified in the template will take precedence. The individual parameter value will only be used if the
VDB template is removed.

Updates to a VDB template will propagate to all associated VDBs.

Data Control Tower – Data Control Tower Home

Data governance – 98

•

•

5.1.5 API metering

5.1.5.1 API metering instructions
DCT employs a per API consumption model, which requires API metering and periodic reporting to Delphix
Customer Success. To support reporting of API consumption, DCT offers an API consumption reporting endpoint
called, “api-usage-report”. This report will provide a list of all unique API endpoints and how often they were used
over the specified time period sorted by API and method.

Required inputs

File type: CSV or JSON (CSV file types are compatible with most spreadsheet-style software like Excel or
Google Sheets)
Start/end date: The default start date is “when DCT was installed” and the default end date is the “time
when the report was generated”.

Example cURL call

curl --location --request GET 'https://[Inser_DCT_Server]/v2/reporting/api-usage-
report/?end_date=2022-06-14T09:00-04:00&start_date=2022-06-01T00:00Z' \
--header 'Content-Type: application/json' \
--header 'Accept: text/csv' \
--header 'Authorization: apk 1.xxxxxxxx'

Example output

api_endpoint,api_method,api_count
"/v2/management/api-clients",GET,2
/v2/management/engines,GET,1
"/v2/management/engines/search",POST,1
"/v2/reporting/api-usage-report",GET,2

5.1.6 Client telemetry
DCT provides complete flexibility to clients on how to attribute their API calls. DCT captures the value provided in an
optional HTTP header (X-Dct-Client-Name) and standard, mandatory HTTP header (User-Agent) for the

purpose of attributing an API call. These values are stored as client_name and user_agent in the backend,
and can be queried in the report. Below are some examples of how this can be used.

Example one

Clients can view the report grouped on the basis of client name and API classification by providing a group_by
query parameter.

curl --location 'https://[Inser_DCT_Server]/v3/reporting/api-usage-report?
group_by=client_name%2Ckind' \

Data Control Tower – Data Control Tower Home

Data governance – 99

1.

2.

--header 'Authorization: <api_key>' \
--header 'Accept: text/csv'

api_endpoint,api_method,api_count,kind,client_name,user_agent,dct_version
,,2,management,client-1,,
,,5,management,client-2,,
,,20,management,client-3,,

The group_by parameter supports any combination of properties from api_endpoint , api_method ,

kind , client_name , user_agent , and dct_version . All properties function as their name describes,

where kind corresponds to API classification.

Example two

Clients filter the records for a list of particular client names, DCT versions, user agents, or classifications, by
providing corresponding query parameters.

Filter the API calls by client names.

curl --location 'https://[Inser_DCT_Server]/v3/reporting/api-usage-report?
group_by=client_name%2Ckind&client_name=client1%2Cclient2' \
--header 'Authorization: <api_key>' \
--header 'Authorization: apk <api key>

Filter the API calls by API classification.

curl --location 'https://[Inser_DCT_Server]/v3/reporting/api-usage-report?
group_by=client_name%2Ckind&api_metric_kind=automation' \
--header 'Authorization: <api_key>' \
--header 'Authorization: apk <api key>'

5.2 Central governance workflows
Data Control Tower delivers the management layer for all connected Delphix engines by virtue of its converged
architecture. As such, DCT has the ability to simplify everyday administration of common engine admin tasks. This
section will go over various how DCT exposes object relationships and reports on meaningful use patterns under
insights.

The API query parameters for this report are dynamic; depending on the number of records in the
backend and the granularity of the response requested, API response can be too large to be handled by
DCT. DCT can run out of memory and eventually crash if that is the case. To prevent this from happening,
this report has the maximum limit set to 10,000 records in the API response. Thus, it is strongly
recommended to always ‘limit’ the scope of the usage response by filtering records on the basis of
start_date and end_date query parameters, or on the basis of client names and/or user agents.

Data Control Tower – Data Control Tower Home

Data governance – 100

5.2.1 Managing engines (Continuous Data)

5.2.1.1 Infrastructure
DCT provides a near real-time list of all connected continuous data engines and lists them in an aggregate view.
From the below screen, Delphix administrators can easily view and manage their engine connections.

From this screen, administrators can manage engine connects via the “Connect Engine” button on the top right
corner. By clicking this button, the below dialogue will appear, asking for connection details.

5.2.1.2 Engine Overview
Individual engine details can be seen and acted upon by clicking down on a particular engine detailed view. Once
clicked, users will be sent to an "Overview" tab that provides relevant metadata related to the engine.

DCT will access the engine as a registered user and, as detailed in the Deployment section, requires both
a username and password as well as admin-level access to the engine.

Data Control Tower – Data Control Tower Home

Data governance – 101

5.2.1.3 Engine-connected Environments
The "Environments" tab presents all environment connections to that particular engine.

5.2.1.4 Local dSources
The "dSources" tab presents all dSources associated with the selected engine. Clicking the "View" button will link
the user directly to the associated dSource page.

Data Control Tower – Data Control Tower Home

Data governance – 102

5.2.1.5 Local VDBs
The "VDBs" tab presents all VDBs associated with the selected engine. Clicking the "View" button will link the user
directly to the associated VDB page to take action.

5.2.1.6 Engine-based Operations Access
Users are able to audit which users have access to this particular engine, what access group they belong to, and the
associated permissions that each user has on this engine. Admins are able to click on the "View" button to access
further details under the access control screen related to that specific user.

5.2.2 Managing dSources

5.2.2.1 Managing dSources
DCT provides the ability to view, search, sort, and filter all dSources within a connected Delphix ecosystem. This
page can be found under the Data section and is used to find and act upon all dSources, if they have the
appropriate access.

Data Control Tower – Data Control Tower Home

Data governance – 103

5.2.2.2 dSource overview
Individual dSource details can be viewed and acted upon by clicking down on a particular dSource's detailed view.
Once clicked, users will be sent to an "overview" tab that provides relevant metadata related to the dSource.

5.2.2.3 Timeflow visibility
Users are able to view snapshot information by tabbing over to the "timeflow" section, which lists all available
snapshots via a vertical timeline. Users are able to modify snapshot retention periods by clicking on the ellipsis
located to the right of the relevant snapshot.

Data Control Tower – Data Control Tower Home

Data governance – 104

5.2.2.4 Access auditing
Users are able to audit what other users have access to a particular dSource, what access group they belong to, and
the associated permissions that each user has on that particular dSource.

5.2.3 Managing VDBs
DCT provides the ability to view, search, sort, and filter all VDBs within a connected Delphix ecosystem. This page
can be found under the Data section and is used to find and act upon all VDB if they have the appropriate access.

5.2.3.1 VDB overview
Individual VDB details can be seen and acted upon by clicking down on a particular VDB detailed view. Once clicked,
users will be sent to an "overview" tab that provides relevant metadata related to the VDB.

Data Control Tower – Data Control Tower Home

35 https://portal.document360.io/docs/timeline-history

Data governance – 105

5.2.3.2 VDB active timeline
Actionable snapshots are listed on the "active timeflow" tab - from this page, users can refresh, enable, disable,
start, stop, delete, and create bookmarks on the VDB. Navigate to the Continuous Data workflows section, then VDB
operations in the UI, and see Active timeline UI for more details.

5.2.3.3 VDB timeline history
A chronological history of all non-active timelines (commonly referred to as timeflows) is shown under the
"Timeflow History" tab. From this page, developers can curate their QA or Development work by renaming
timeflows to match their testing history. Developers also have the ability to access old timeflow data by making a
particular timeflow "active". Navigate to the Continuous Data workflows section, then VDB operations in the UI,
and see Timeline history UI35 for more details.

https://portal.document360.io/docs/timeline-history
https://portal.document360.io/docs/timeline-history

Data Control Tower – Data Control Tower Home

Data governance – 106

5.2.3.4 VDB bookmarks
A list of all bookmarks generated on the selected VDB can be found under the "Bookmarks" tab. This page provides
a list of all bookmarks allowing for general organization and actions (developers can use bookmarks as a refresh or
provision point from the API).

5.2.3.5 VDB access
Users are able to audit which users have access to this particular VDB, what access group they belong to, and the
associated permissions that each user has on that VDB. Admins are able to click on the "View" button to access
further details under the access control screen related to that specific user.

5.2.3.6 VDB templates
Importing and removing imported VDB templates from connected engines is an available action from the VDB
Config Templates page.

Data Control Tower – Data Control Tower Home

Data governance – 107

•

•

Import templates

To import a template, select the engines from the list in the import dialog.

Remove imported templates

To remove a template, select the engines from the list in the remove dialog.

Data Control Tower – Data Control Tower Home

Data governance – 108

5.2.4 Managing environments (Continuous Data)

5.2.4.1 Global environments list
DCT provides the ability to view, search, sort, and filter all Continuous Data environments within a connected
Delphix ecosystem. This page can be found under the Data section and is used to find and act upon all environment
connections.

5.2.4.2 Manage environments
Selecting a standalone environment in the Data page shows an ellipsis in the top right corner. When the button is
selected, the option to Enable/Disable, Refresh, or Delete the environment appears.

Data Control Tower – Data Control Tower Home

Data governance – 109

5.2.4.3 Edit host details
Selecting a standalone environment in the Data page shows an Edit Host option; it is not yet available for cluster
environments. When the button is selected, the host details window will open, showing the input fields that can be
edited. Select 'Save' to confirm the changes and close the window.

5.2.5 Managing bookmarks

5.2.5.1 Global Bookmarks List
DCT provides a near real-time list of all bookmarks across all VDBs and VDB-groups and their associated VDB(s).
From the below screen, Delphix administrators can easily view and manage their bookmark estate.

Data Control Tower – Data Control Tower Home

Data governance – 110

5.2.6 Insights

5.2.6.1 Central governance insights
DCT provides global reporting of real-time statuses. This section will break down all of the reports in the "Insights"
Section. Note: all insight dashboards have the capability of "exporting" to a CSV or JSON format.

5.2.6.2 Global storage summary
This section gives a real-time perspective of block storage capacity on each connected engine as well as relevant
metadata such as capacity consumption percentage and object count.

5.2.6.3 VDB inventory report
This page gives a complete list of all VDBs along with relevant details.

Data Control Tower – Data Control Tower Home

Data governance – 111

5.2.6.4 dSource inventory report
This page gives a complete list of all dSources along with relevant details including VDB lineage count and storage
consumption sizing.

5.2.6.5 Consumption Metrics
This page gives a complete list of all unvirtualized source sizing. This is a critical report for customers using the per
TB pricing model.

Data Control Tower – Data Control Tower Home

Data governance – 112

Data Control Tower – Data Control Tower Home

Continuous Data workflows – 113

6 Continuous Data workflows

6.1 DevOps TDM
DCT delivers all of the Continuous Data and developer operations necessary to power DevOps and Test Data
Management use-cases. This includes a suite of APIs to drive automation.

Using the above APIs, DCT can seamlessly integrate Delphix data into DevOps pipelines by providing a single point
of integration for a broad Delphix deployment.

Data Control Tower – Data Control Tower Home

Continuous Data workflows – 114

1.

6.2 Developer experience
In addition to automation use cases, DCT provides the APIs and UI to power developer access to Delphix data and
common Delphix operations. This section will detail all of the major capabilities that make up this revamped
Delphix developer experience.

6.3 Self-service vs. DCT developer experience
Data Control Tower now provides a central experience for developers. Whether a developer prefers to leverage
Delphix via API, integration, or UI, DCT delivers the ability to quickly access data from any connected Delphix
engine, and the common capabilities to drive application development and testing.

Previously, Delphix offered a local addon application called Self-Service (or Jet Stream) that was attached to
applicable data engines. Self-Service provided an interface to access pre-provisioned datasets encapsulated in
"Self-Service containers", which would be made available by admin configuration.

Data Control Tower has taken the most common operations and use-cases, and has made this experience
accessible to developers via API, integration, and UI. This article will describe the key use-case and operational
overlap, as well as the differences between the local engine Self-Service experience and DCT's developer
experience.

6.3.1 Key similarities
Developer access to Delphix Data
The DCT developer experience is geared toward driving access to data, with all of the same time-based

Data Control Tower – Data Control Tower Home

Continuous Data workflows – 115

2.

3.

1.

2.

3.

4.

5.

6.

7.

operations to enable application development and testing. Operations (accessible via the API, integration,
or UI) include refresh, rewind, start/stop, enable/disable, bookmark, bookmark share, and timeflow
visibility/access.
Developer timeflow history
A common UI benefit in Self-Service is the ability to visualize past timeflows (see Timeline history(see page 127)
for more detail), which acts like a testing record. Every time a developer runs a test and rewinds/refreshes,
that past test results are stored in Delphix as a timeflow. DCT has both API and UI instrumentation to make
the visualization and curation of timeflows incredibly simple.
Data-as-Code
Developers can use DCT bookmarks to reference a point in time on a VDB (or group of VDBs) with a
developer-set retention period and human-readable name. This is valuable for development teams as they
evolve application code. Whenever a code change necessitates a new database schema, a developer can
bookmark a VDB that is formatted to work with that particular code branch. This empowers development
teams to always have access to a viable test data set for any and code branches of an application.

6.3.2 Key differences
DCT delivers a central interface powered by its converged architecture
This means that developers have a single location to log into in order to access and manipulate their virtual
data sets.
User experience
The DCT developer experience UI has completely been reworked to make developer access to Delphix data
easy and intuitive. This experience shows itself in three UI tabs, Active Timeline, Timeline History, and
Bookmarks, that are located in each VDB's detail menu. This experience is meant to be used by all Delphix
users (admins and developers, especially) and will be tailored to the individual based on the DCT Access
Control system.
No template/container model
Previously, engine administrators needed to create templates encapsulating one or more related VDBs and
provision new VDBs into a developer-accessible container. This model required manual administration that
created bottlenecks for data access, which was especially prohibitive for automation use-cases. The benefit
of this model was two-fold: first, containers represented a miniature sandbox for developers (using a Self-
Service user role) and second, bulk operations could be performed on all container-grouped VDBs while
maintaining referential synchronicity, a valuable attribute for integration testing.
DCT Access Control replaces the developer sandbox enabled by Self-Service containers
Developers simply log into DCT and can view and act upon data that they are entitled to access with
operations tightly bounded by their defined role. DCT's Access Control system has the ability to automate
both user membership of access groups and entitlement access via attribute-defined scoped roles. In
addition, roles can be customized in DCT such that granular permissions can be extended and restricted
down to both access group and user levels.
DCT VDB Groups replace the Self-Service container grouping mechanism
Currently only available via API, VDB groups enable the association of one or more VDBs for bulk operations
while maintaining referential synchronicity.
Time operations consolidation
The developer experience UI consolidates the many time-based operations across Continuous Data and Self-
Service (e.g. refresh, rewind, rollback, restore, reset, etc.) into a single operation; refresh. From the DCT UI,
clicking refresh will take users to a contextualized screen that simplifies time operations by focusing on what
timeline (and what time) the user would like to align to (parent, self, or relative).
No "branching"
Branching in Self-Service introduced the notion of task-specific timelines, each with its own associated sets
of timeflows. This was a concept that was heavily tied to the "template/container" model and is obviated by
the DCT Access Control system that can enable gated provisioning access to a developer. If a new timeline is
needed for a separate task, you can provision a new VDB.

Data Control Tower – Data Control Tower Home

Continuous Data workflows – 116

6.4 Creating and managing bookmarks

6.4.1 Create new Bookmark
Bookmarks are a critical developer tool that enables the creation of a namable time reference to a snapshot of a
VDB or VDB group. Bookmarks for single VDBs can be created from the DCT UI by selecting a VDB and expanding
into its detailed view. From the Active Timeline view, users can select the ellipsis in the top right corner and
"Create Bookmark".

Selecting the "Create Bookmark" button will open a window that enables bookmark naming, setting the custom
retention period for that bookmark, and assigning any relevant tags. Creating bookmarks this way will initiate a
new snapshot operation that will then be associated with that bookmark.

DCT has a Delphix-supported integration with ServiceNow, which is commonly used as a developer
resource-request tool. Users can build custom developer-centric workflows with any operation currently
instrumented through the DCT API layer.

Data Control Tower – Data Control Tower Home

Continuous Data workflows – 117

Bookmarks relating to a specific VDB can be found under the bookmarks tab in a VDBs details page. This provides a
curated list of actionable snapshots that represent anything from a relevant test result to a transformed set of
schema that can be associated with a specific branch of code.

6.4.2 Bookmark API Documentation
Some advanced bookmark operations are only available via API at present, formal documentation can be found via
DCT's swagger docs or the Developer resources section. This portion of the bookmarks documentation will discuss
examples of advanced use-cases.

Data Control Tower – Data Control Tower Home

Continuous Data workflows – 118

6.4.3 Create a Bookmark at the current time for multiple VDBs
In cases such as integration testing, bundling multiple VDBs together to represent a complete set of data that a
complex application would run on is helpful. This API example shows how a single bookmark reference can be
created off of multiple VDBs, to provide a provision point for new testing sets or the creation of a VDB Group that
can be used to maintain referential synchronicity from that bookmark point.

curl -X 'POST' \
 'https://<APPLIANCE_ADDRESS>/v3/bookmarks' \
 -H 'accept: application/json' \
 -H 'Authorization: <API_KEY>' \
 -H 'Content-Type: application/json' \
 -d '{
 "name": "MyBookmark1",
 "vdb_ids": [
 "1-ORACLE_DB_CONTAINER-2",
 "2-ORACLE_DB_CONTAINER-2"
]
}'

{
 "bookmark": {
 "id": "9e8c7223f1af4694a19ac2c2f7696eda",
 "name": "MyBookmark1",
 "creation_date": "2023-03-27T20:56:13.916857Z",
 "vdb_ids": [
 "1-ORACLE_DB_CONTAINER-2",
 "2-ORACLE_DB_CONTAINER-2"
],
 "retention": 30,
 "expiration": "2023-04-26"
 },
 "job": {
 "id": "8fe825f5635d45299915c3cb88a17623",
 "status": "PENDING",
 "type": "BOOKMARK_CREATE",
 "target_id": "9e8c7223f1af4694a19ac2c2f7696eda",
 "start_time": "2023-03-27T20:56:14.363549Z"
 }
}

These API calls will return a DCT job to track the creation process. This job ID can then be used to poll the
status via the jobs API. Example response:

Data Control Tower – Data Control Tower Home

Continuous Data workflows – 119

6.4.4 Create a Bookmark for a VDB from an existing Snapshot
DCT Bookmarks (as of the 6.0 release) can create bookmarks from existing snapshots. This is particularly useful for
users looking to migrate Self-Service bookmarks to DCT or any developer looking to retroactively create a
bookmark reference.

curl -X 'POST' \
 'https://<APPLIANCE_ADDRESS>/v3/bookmarks' \
 -H 'accept: application/json' \
 -H 'Authorization: <API_KEY>' \
 -H 'Content-Type: application/json' \
 -d '{
 "name": "MyBookmark2",
 "snapshot_ids": [
 "1-ORACLE_SNAPSHOT-11"
]
}'

6.4.5 Create a Bookmark for a VDB from an existing Snapshot
Starting in version 7.0, the UI has an option to create bookmarks from the existing snapshots.

On the VDB detail page, under the Active Timeline tab for each snapshot, a Create Bookmark action is available.
This opens a dialogue that shows a list of inputs for the user to select from, to create a bookmark.

Once the user clicks Create Bookmark in the dialogue, the bookmark will be created for that particular snapshot (if
all the mandatory fields are completed), else errors will be shown.

Data Control Tower – Data Control Tower Home

Continuous Data workflows – 120

6.5 VDB operations

The VDB operations UI serves as an actionable command center for admins and developers. With this UI, users can
migrate from using the local engine UI to leveraging DCT to do their daily VDB-related work. This encompasses both
continuous data as well as any developers leveraging Delphix Self Service. The core benefit of this UI experience is
the breadth of access coupled with DCT's access control system. Using both together, a user can access and act
upon any data on any connected engine within the boundaries of the entitlement and permissions set by the
admin-driven access control system.

To access the VDB operations UI, users only need to log into DCT and select the detailed view of any particular VDB.

The developer experience will continue to see investment and additional capabilities over the next few
releases.

Users will only be able to see VDBs if they have been granted access via the Access Control system.

Data Control Tower – Data Control Tower Home

Continuous Data workflows – 121

•
•
•

•
•

•
•
•

•

•

•

From there, users can perform common operations such as refresh, rewind, and bookmark using the Active
Timeline tab. Developers have additional functionality with the Timeline History tab that exposes non-active
timelines (also known as timeflows).

6.5.1 VDB provision UI
Users can provision VDBs from the DCT UI using the Provision VDB button located under the action button on a VDB
details page. The following DBMS types and configurations are supported:

Oracle Single Instance
Oracle Multitenant (linked CDBs only)
MSSQL Single Instance

Extending the developer experience capabilities in DCT, users can now provision MSSQL single instance databases
or Oracle single instance multi-tenant databases with linked CDB data platforms from the user interface, using an
intuitive wizard workflow. Located on the VDB page is a Provision VDB button that opens the provisioning wizard.
(Note: non admin users will only be able to see provisionable sources (dsources and/or VDBs), environments, and
engines to which they are authorized to see and act upon).

The provisioning wizard will walk through the following steps:

Source: search and select either a dSource or VDB to provision from.
Provision Point: three options for a provision point, similar to a refresh point.

A selected snapshot
A specific timestamp (closest snapshot to the timestamp)
A location ID/number (closest snapshot to the location number)

Target Environment: shows compatible environments with compatible repositories, and can optionally
provide privileged credentials.
Target Configuration: should be prefilled with default configurations. One thing to note here are the tags
which are additive when “Include Tags from Parent” is checked, and you wouldn’t immediately see the tags
from the parent in the editor. Tags are added when the Include Tags from Parent box is checked, you
would not immediately see them from the parent in the editor.

Users can also select the engine group and register listeners by expanding the advanced section
below. In DCT, it is recommended to use tags instead of engine groups.

Data Control Tower – Data Control Tower Home

Continuous Data workflows – 122

•
•

•
•

•
•

•
•

•
•

Policies: choose a snapshot policy.
Summary: review the selections that have been made.

The below example walks through a provisioning workflow for an Oracle 11.2 Multitenant VDB (Note: TDE and Auto
VDB restart are supported only for Oracle version 12.2 or higher).

6.5.2 VDB refresh UI

6.5.2.1 Overview
The VDB refresh wizard in the Data Control Tower UI offers important engine refresh operations like:

Self-refresh by snapshot, timestamp, or location
Refreshes a VDB back to a point in its own history.

Refresh to parent by snapshot, timestamp, or location
Data is pulled from the VDB provision parent (the dSource or VDB from which the VDB was
provisioned).

Refresh to relative by snapshot, timestamp, or location
Allows selection of data from either the origin dSource of the VDB (which could be the immediate
parent, or parent of parent, etc.) or any VDB sharing the same origin dSource (which could be parent,
child, sibling, or similar relationship).

Refresh to bookmark snapshot
Refreshes a VDB to a compatible bookmarked snapshot.

In order to refresh from a dSource or VDB, the account performing the action must have the REFRESH
permission on both the VDB being refreshed and the dSource (or VDB) from which the data is being
refreshed.

Data Control Tower – Data Control Tower Home

Continuous Data workflows – 123

6.5.2.2 User interface
The self-refresh by snapshot operation can be initiated as an action from the VDB's own active timeline or
timeline history view, using the action menu for snapshots.

All three refresh types can be performed by opening the refresh wizard on the VDB details page. In the first step,
select the refresh source:

Next, select the snapshot or point in time to refresh to:

Data Control Tower – Data Control Tower Home

Continuous Data workflows – 124

•

•

•

For self-refresh, a timeflow from the VDB’s own history must be selected, and then a snapshot within the
selected timeflow.
For parent refresh, a timeflow from the VDB’s provision parent’s history must be selected, and then a
snapshot within the selected timeflow.
For relative refresh, first a relative dSource or VDB must be selected, then a timeflow, then a snapshot.

For all three refresh types, review the summary page once configurations are complete, then click submit:

Refresh to Bookmark

Bookmark is available as a Select Refresh Source option in the refresh wizard, which allows you to refresh from
compatible bookmarks. Choose a bookmark from the list and click Next.

Refreshing happens asynchronously and takes a various amount of time. The DCT UI does not currently
show asynchronous job progress or errors, please refer to the engine UI for this function.

Data Control Tower – Data Control Tower Home

Continuous Data workflows – 125

You can also refresh from a particular bookmark under the VDB details page, via the Bookmarks tab. Choose a
bookmark from the list as the one to refresh from, then click the Actions menu and select Refresh to Bookmark.

Data Control Tower – Data Control Tower Home

Continuous Data workflows – 126

•

•
•
•

6.5.3 Active timelines UI

6.5.3.1 Active Timeline View
Active Timeline can be found by selecting “details” for any VDB located on the VDB list page in DCT and selecting
the “Active Timeline” tab. This view serves as an operations console for any user with the appropriate entitlements
to see and act upon the identified VDB granted by the DCT access control system.

This view shows a vertical timeline-based representation of all actionable points of interest (snapshots) for that
VDB. The snapshot list is chronologically grouped over blocks of time to easily identify relevant snapshots to act
upon. Once the right snapshot is found, users can access a contextualized action menu by selecting the
corresponding ellipsis to the relevant snapshot.

Alternatively, users can perform common Continuous Data actions via the ellipsis in the top right of the Active
Timeline screen. This menu will offer VDB-wide, generalized operations including:

Refresh: This is a generalized operation to realign your VDB's timeline with another. More information can
be found in the Refresh a VDB(see page 122) article.
Start/Stop: A way to manage target host bandwidth.
Enable/Disable: An administrative operation required for upgrades/migrations.
Create Bookmark: Create a special reference to a snapshot that has a custom name and retention period.

Contextual snapshot menu: By selecting the ellipsis next to the VDB of interest, users can refresh to a
snapshot or create a bookmark (a nameable and shareable snapshot reference.



Data Control Tower – Data Control Tower Home

Continuous Data workflows – 127

•

•

•

•

6.5.3.2 Additional notes
Refresh using the DCT UI
Data Control Tower has consolidated all contextualized time-based operations (e.g. refresh, rewind,
rollback, restore, reset, etc.) across Continuous Data and Developer products into a general "Refresh". By
clicking refresh, users will be prompted on what timeline they would like to align: Parent, Self, or Relative.
From there, users will be taken to a wizard that will give relevant timeline options and points in time to
perform the refresh.
Start/Stop
Starting and Stopping are geared toward bandwidth management in a target environment. Stopping a VDB
will place it in stasis such that it can't be accessed, but also won't consume bandwidth. Starting it back up
will re-enable it for regular activity.
Enable/Disable
Enabling and Disabling are geared toward administrative operations such as VDB migration or upgrade.
Disabling a VDB removes all traces of it, including any configuration files, from the target environment to
which it was provisioned. Re-enabling the VDB will restore those configuration files.
Create Bookmark
Bookmarks serve as a human-referenceable representation of time that can work for a single VDBs or VDB
groups. Bookmarks also have the capability to be shared (Refresh to relative in the Refreshing a VDB(see
page 122) article). From the top level menu, users will be able to name the reference and set a unique
retention period.
Bookmarks do not appear in the Active Timeline, to access existing bookmarks, users will have to navigate to
the "Bookmarks" tab on the VDB detail view.

6.5.4 Timeline history UI

6.5.4.1 Timeline History view
The timeline history view can be found by selecting “details” for any VDB located on the VDB list page in DCT and
selecting the “Timeline History” tab. This view serves as a developer-centric console that shows the complete
history of a VDB including non-active timelines, which is a critical resource for developers as these can contain
information like past test results. Using this page, developers can curate and access the complete chronology of
their testing efforts with operations such as renaming individual timeflows, make active, refresh to snapshot, and
create bookmark to drive organization and access.

6.5.4.2 The Timeline History user interface
If entitled via the DCT Access Control system, developers can see and act upon VDBs in the VDB list view using the
timeline history tab under "details". The timeline history UI is comprised of a vertical timeline-based representation
of all actionable points of interest (snapshots) for that VDB. The snapshot list is chronologically grouped over blocks
of time to easily identify relevant snapshots to act upon. Once the right snapshot is found, users can access a
contextualized action menu by selecting the corresponding ellipsis to the relevant snapshot.

Data Control Tower – Data Control Tower Home

Continuous Data workflows – 128

6.5.4.3 Non-active timelines
Non-active timelines (often referred to as “timeflows” in Self-Service) are a critical aspect of how Delphix
Virtualization works and an important Developer Tool. Whenever a time-based operation takes place, the previous
timeline (and associated data) becomes non-active and a fresh timeline takes its place.

Data Control Tower – Data Control Tower Home

Continuous Data workflows – 129

For developers, having the ability to catalog (name and tag) and reference past timelines is a critical aspect of
application development such as performing ad hoc code validation or manual testing. The timeline history UI in
DCT provides a home for single VDB visibility of all accessible timelines (note: timeline availability is controlled
through capacity management and snapshot retention policies).

6.5.4.4 Time concepts within the Timeline History Tab
DCT’s new user interface highlights different notions of time within Delphix (e.g. dSource, VDB, and VDB lineages)
and how they relate to one another. These time-based relationships are exposed in the Timeline History view to
drive accurate testing for developers.

The “Based on dSource time” designation helps to drive awareness of the relationship between a VDB and its
dSource provision point (in most cases this will equate to the production database’s state at that time), which is
helpful for use cases such as capturing data from a meaningful event. As a VDB refreshes to newer snapshots on a
dSource, those changes of data state are grouped separately on the Timeline History view as they represent
completely different data.

6.5.4.5 Timeflow operations
“Make Active”, a developer can reference any past timeflows and data represented therein by making a timeflow
“Active”. This can be done by simply clicking on the timeflow of interest and selecting “Make Active”.

Non-active timeline creation from "Self-Refresh"
In this scenario, a developer has performed a “self-refresh” (formerly referred to as a “rewind” or
“rollback”). In refreshing Snapshot B, the developer has created a new active timeline that represents a
clean slate starting with the data state of Snapshot B. If the developer wants to refer back to the past
results that are represented on the non-active Timeline, he or she can activate the past timeline by hitting
the “Make Active” button in the DCT User Interface or by refreshing to a point in time by referencing the
non-active Timeline’s ID.



Data Control Tower – Data Control Tower Home

Continuous Data workflows – 130

Refresh to snapshot

Included within each timeflow are snapshots that can be accessed via a dropdown menu under each timeflow. If
given the right permission, a developer can refresh the VDB to that snapshot. While this may seem similar to “Make
Active”, there are major underlying differences as a “Refresh” will reprovision the VDB based on that point in time,
whereas, “Make Active” simply changes the reference to different blocks of the underlying storage.

Create bookmark

On a snapshot will enable developers to convert that snapshot into a DCT Bookmark (see page 109)that enables
developers to assign a name and special retention policy to that time reference. This also enables stronger
collaboration between developers as bookmark references can be used for a sibling refresh operation.

Data Control Tower – Data Control Tower Home

Continuous Data workflows – 131

Rename timeflow

Developers can curate time flows to correspond to tests such that they can easily reference results data. This action
can be performed by clicking the ellipsis on the time flow to reach a drop-down menu. This menu includes the
option to "rename" which will open a dialog box to input a new name. The input is prefilled with the current
Timeflow name by default. Saving the dialog kicks off a job to rename the timeflow. The changes may take a short
time to be reflected in the UI.

Delete timeflow

Developers have the option to delete time flows via the UI by selecting the ellipsis next to the corresponding time
flow and selecting "delete". When clicked, this opens a confirmation dialog asking if the user wishes to delete the
timeflow. If the dialog is confirmed, a job is kicked off to delete the timeflow. Note: This menu item is disabled for
the currently-active timeflow.

6.5.4.6 API documentation
While the DCT UI provides a visual aspect to timeflow chronology and grouping, the DCT API has all of the necessary
instrumentation to integrate these concepts into automation. The formal documentation can be found via DCT's
swagger docs or the developer resources documentation section. This portion of the timeflow documentation will
provide some general examples:

Get a list of a VDB's timeflows

This simple call will enable the listing of the entire timeflow roster underneath a VDB enabling a developer to take
inventory and action.

curl -X 'POST' \
 'https://<APPLIANCE_ADDRESS>/v3/timeflows/search?limit=50&sort=id' \

Data Control Tower – Data Control Tower Home

Continuous Data workflows – 132

 -H 'accept: application/json' \
 -H 'Authorization: <API_KEY>' \
 -H 'Content-Type: application/json' \
 -d '{
 "filter_expression": "dataset_id eq '\''1-ORACLE_DB_CONTAINER-2'\''"
}'

The UPDATE timeflow API can be used to change a timeflow's name

Once the appropriate timeflow is found, developers can rename the timeflow to align with a naming scheme or
other relevant designations such as a compatible code branch.

curl -X 'PATCH' \
 'https://<APPLIANCE_ADDRESS>/v3/timeflows/1-ORACLE_TIMEFLOW-7' \
 -H 'accept: application/json' \
 -H 'Authorization: <API_KEY>' \
 -H 'Content-Type: application/json' \
 -d '{
 "name": "Latest on refresh state"
}'

List all the snapshots for a timeflow
Developers can then use the snapshot API to find all relevant "actionable" points in time on the identified timeflow.
The below example shows how to only expose snapshots on a particular timeflow. From there, developers can feed
the relevant snapshot ID into refresh or provision endpoints or create a bookmark reference from that snapshot.

curl -X 'POST' \
 'https://<APPLIANCE_ADDRESS>/v3/snapshots/search?limit=50&sort=id' \
 -H 'accept: application/json' \
 -H 'Authorization: <API_KEY>' \
 -H 'Content-Type: application/json' \
 -d '{
 "filter_expression": "timeflow_id eq '\''1-ORACLE_TIMEFLOW-7'\''"
}'

Data Control Tower – Data Control Tower Home

36 https://documentation.delphix.com/continuous-compliance/docs/working-with-multiple-masking-engines

Continuous Compliance workflows – 133

•
•

•

7 Continuous Compliance workflows

With the ability to distribute and run jobs, DCT enables advanced Compliance Engine architectures to be
orchestrated and monitored using DCT’s real-time, persistent relationships with connected Compliance Engines.
When syncing a Compliance Engine, DCT will create references for all Compliance jobs on that Engine. These will
show up as unique objects tracked by DCT that can now be leveraged with job move APIs.

7.1 Listing and searching compliance jobs
When a Compliance Engine is registered with DCT, compliance jobs (referred to as MaskingJobs within the DCT API)
on the Engine are automatically ingested and presented as DCT MaskingJob objects.

Example of listing all MaskingJobs:

curl -X 'GET' \
 'https://<APPLIANCE_ADDRESS>/v3/masking-jobs' \
 -H 'accept: application/json' \
 -H 'Authorization: <API_KEY>'

Example of searching for OnTheFly MaskingJobs:

curl -X 'POST' \
 'https://<APPLIANCE_ADDRESS>/v3/masking-jobs/search' \
 -H 'accept: application/json' \
 -H 'Authorization: <API_KEY>' \
 -H 'Content-Type: application/json' \
 -d '{
 "filter_expression": "is_on_the_fly_masking eq true"
}'

With the new job move APIs, DCT can now be used to power two advanced masking reference architectures36:
Software Development Lifecycle (SDLC) and Horizontal Scale architectures. SDLC enables the separation of
duties for the development, quality assurance, and production use of masking jobs whereas Horizontal Scale
enables the use of a central configuration engine with the movement of jobs to headless compute engines.

To enable these architectures, DCT has introduced three new operations: Job Copy, Job Execute, and Job Migrate:

Copy: Supports SDLC by copying a job, but maintaining separate references in DCT.
Execute: Supports Horizontal Scale by copying a job, but maintaining the same reference between two
copies. DCT will also keep both of these copies in sync.
Migrate: Supports the movement of a single instance from one engine to another.

Compliance Engines limit any syncing operations while a profiling or masking job is running. When using
DCT job move, execute, or migrate operations, please ensure that the target Compliance Engine is in an
idle state. Future Compliance enhancements to DCT will remove this limitation.



https://documentation.delphix.com/continuous-compliance/docs/working-with-multiple-masking-engines
https://documentation.delphix.com/continuous-compliance/docs/working-with-multiple-masking-engines

Data Control Tower – Data Control Tower Home

Continuous Compliance workflows – 134

7.2 Consolidated operations (intelligent syncing)
DCT has simplified the set of operations required to move a job and its dependencies. Previously, orchestrating
movement of jobs required three separate API calls: Job Sync, Global Object Sync, and Credentials Update (on the
newly created job). DCT has now consolidated all three of these operations into each of the job move APIs. In
addition, if two jobs are held in sync (see Job Execute(see page 143)), DCT will auto update synced jobs whenever one
of those jobs has been modified (i.e. updated rule set, new algorithms, etc.).

curl -X 'PATCH' \
 'https://<APPLIANCE_ADDRESS>/v3/masking-jobs/d53812ce-9186-485d-a388-44bc52087ead'
 \
 -H 'accept: application/json' \
 -H 'Authorization: <API_KEY>' \
 -H 'Content-Type: application/json' \
 -d '{
 "connector_username": "user123",
 "connector_password": "password123"
}'

7.3 Managing engines (Continuous Compliance)
DCT provides a near real-time list of all connected Continuous Compliance engines and lists them in an aggregate
view. From the below screen, Delphix administrators can easily view and manage their engine connections.

From this screen, administrators can manage engine connects via the “Connect Engine” button on the top right
corner. By clicking this button, the below window will appear asking for connection details.

In order to transfer connector credentials with a job as part of the job move, you will need to associate
those credentials using the connector credentials API. See sample code below on how to update
credentials.

Example of updating a MaskingJob with connector credentials:

Data Control Tower – Data Control Tower Home

Continuous Compliance workflows – 135

7.3.1 Engine overview
Individual engine details can be seen and acted upon by clicking down on a particular engine detailed view. Once
clicked, users will be sent to an "overview" tab that provides relevant metadata related to the engine.

7.3.2 Engine-based operations access
Users are able to audit which users have access to this particular engine, what access group they belong to, and the
associated permissions that each user has on this engine. Admins are able to click on the "View" button to access
further details under the access control screen related to that specific user.

DCT will access the engine as a registered user and, as detailed in the Deployment section, requires both
a username and password as well as admin-level access to the engine. For compliance engines, select
"Masking" type when registering an engine.

Data Control Tower – Data Control Tower Home

Continuous Compliance workflows – 136

7.4 Compliance jobs

7.4.1 Job UI

7.4.1.1 Global compliance jobs list
When connected to a Continuous Compliance engine, DCT will sync and create references to every compliance job
on the engine. All of those job references can be found in the global compliance list, which is a taggable, filterable,
sortable, and searchable list of all compliance jobs across a connected Delphix ecosystem.

7.4.1.2 Compliance job overview
Individual compliance job details can be seen and acted upon by clicking down on a particular compliance job
detailed view. Once clicked, users will be sent to an "overview" tab that provides relevant metadata related to the
VDB.

Data Control Tower – Data Control Tower Home

Continuous Compliance workflows – 137

7.4.1.3 Compliance job access tab
Users are able to audit which users have access to this particular compliance job, what access group they belong to,
and the associated permissions that each user has on this job. Admins are able to click on the "View" button to
access further details under the access control screen related to that specific user.

7.4.1.4 Compliance job execution history tab
The compliance jobs page also includes job execution history. Execution information will be recorded and
displayed on this tab, and includes the status (success, running, failed), run time, submit, and end timestamps, and
engine on which it ran. Additionally, clicking the “details” button for an execution will display its report.

Data Control Tower – Data Control Tower Home

Continuous Compliance workflows – 138

7.4.1.5 Compliance job execution details
The execution details view includes a list of execution events and the execution log. This is particularly useful when
troubleshooting failed executions.

Details for successful executions may also have events and logs which include relevant information, such
as warnings.

Data Control Tower – Data Control Tower Home

Continuous Compliance workflows – 139

7.4.1.6 Operations
An Operations page is available under the Admin menu to display the list of all the DCT Jobs across Delphix
infrastructures. It displays the relevant details for the operation, such as status, type of job, target id (refers to the id
of the object on which the operation has been performed), start time, last updated time, etc.

Data Control Tower – Data Control Tower Home

Continuous Compliance workflows – 140

Further details regarding the job, such as engine id, error, or warning logs can be viewed by clicking on the view
link, which navigates to the operation details page.

Data Control Tower – Data Control Tower Home

Continuous Compliance workflows – 141

7.4.2 Copy job

The Masking Job Copy operation creates a duplicate of a job with a separate reference for that new copy. This
operation supports SDLC workflows as DCT will maintain unique references for each instance of a masking job,
enabling them to be managed independently.

7.4.2.1 User interface documentation
Job copy can be run via the DCT UI by accessing a compliance job's detailed view and selecting the ellipsis in the
top right corner and clicking on "copy". This will open a window to select the target engine, the new name of the
transferred job, source and target environment details, and relevant tags.

Compliance Engines limit any syncing operations while a profiling or masking job is running. When using
DCT job move, execute, or migrate operations, please ensure that the target Compliance Engine is in an
idle state. Future Compliance enhancements to DCT will remove this limitation.



Data Control Tower – Data Control Tower Home

Continuous Compliance workflows – 142

7.4.2.2 API documentation
For input, the user must specify the target engine along with the environment on the target engine that the job will
be copied onto. The engine and environment pair is what uniquely identifies a copy of the Masking Job. Calling the
COPY API against the same target engine and environment effectively serves as a re-sync and does not create a new
DCT MaskingJob entity.

Example of copying a MaskingJob to engine with ID 2 and environment named ‘prod-env’:

curl -X 'POST' \
 'https://<APPLIANCE_ADDRESS>/v3/masking-jobs/d53812ce-9186-485d-a388-44bc52087ead/
copy' \
 -H 'accept: application/json' \
 -H 'Authorization: <API_KEY>' \
 -H 'Content-Type: application/json' \
 -d '{
 "target_engine_id": "2",
 "target_environment_id": "prod-env"
}'

MaskingJob sync will not copy connector credentials to another engine. In order to make a copied job executable
outside of DCT, the credentials must be set on the Connector itself. The connectors for a MaskingJob can be
searched for, updated, and tested directly via DCT.

Example of listing connectors for a MaskingJob:

Data Control Tower – Data Control Tower Home

Continuous Compliance workflows – 143

curl -X 'GET' \
 'https://<APPLIANCE_ADDRESS>/v3/masking-jobs/d53812ce-9186-485d-a388-44bc52087ead/
connectors' \
 -H 'accept: application/json' \
 -H 'Authorization: <API_KEY>'

Example of updating a connector’s credentials:

curl -X 'PATCH' \
 '<https://<APPLIANCE_ADDRESS>/v3/connectors/2-DATABASE-23'> \
 -H 'accept: application/json' \
 -H 'Authorization: <API_KEY>' \
 -H 'Content-Type: application/json' \
 -d '{
 "username": "USER123",
 "password": "password123"
}'

Example of testing a connector:

curl -X 'POST' \
 '<https://<APPLIANCE_ADDRESS>/v3/connectors/2-DATABASE-23/test'> \
 -H 'accept: application/json' \
 -H 'Authorization: <API_KEY>' \

7.4.3 Execute job

The Execute endpoint creates a duplicate of a job while maintaining a single reference for both job instances. This
operation supports Horizontal Scale workflows, as DCT will maintain a singular reference for all instances of a job
across any number of connected Compliance engines.

As part of this endpoint, DCT will maintain all of these job instances in sync, so they can all be controlled from a
single configuration point (it's recommended to dedicate a select engine or set of engines to the creation and
updating of masking jobs and dependencies) and any changes are automatically propagated to the other job
instances at the time of the next job execute operation. This enables users to identify a masking job on a
configuration engine, copy it over to a dedicated compute engine (or set of engines), and run that job at a regular
cadence through DCT. Whenever the job needs to be updated, the user simply updates the job on the configuration
engine.

Compliance Engines limit any syncing operations while a profiling or masking job is running. When using
DCT job move, execute, or migrate operations, please ensure that the target Compliance Engine is in an
idle state. Future Compliance enhancements to DCT will remove this limitation.



Since all jobs connected via the job execute operation are under a single reference, every time a job is
run, its run statistics will report back to DCT and will be recorded under that singular job reference.

Data Control Tower – Data Control Tower Home

Continuous Compliance workflows – 144

Executing a MaskingJob requires only a reference to a target engine as input. DCT will take care of syncing the job to
the target engine and executing it. DCT will create and manage the environment where the job is copied onto.

Example of executing a MaskingJob on engine with ID 2:

curl -X 'POST' \
 'https://<APPLIANCE_ADDRESS>/v3/masking-jobs/d53812ce-9186-485d-a388-44bc52087ead/
execute' \
 -H 'accept: application/json' \
 -H 'Authorization: <API_KEY>' \
 -H 'Content-Type: application/json' \
 -d '{
 "engine_id": "2"
}'

This will return a DCT job that can be further polled for status updates. The job will only transition to the
COMPLETED state when the entirety of the sync and execution has completed on the target engine.

When a MaskingJob is executed via DCT and the job is synced to the target engine, the default Connector is used for
execution. Masking job sync never copies credentials, for security reasons. Since having credentials set on the
target connector is required for execution, DCT enables this by allowing users to store connector credentials within
DCT itself. A DCT MaskingJob now contains properties for the connector credentials. The expectation is that users
will pre-store the credentials by using the UPDATE API on the MaskingJob. MaskingJob execution has a hard
requirement that credentials be saved within a MaskingJob prior to allowing execution.

Example of updating a MaskingJob with connector credentials:

curl -X 'PATCH' \
 'https://<APPLIANCE_ADDRESS>/v3/masking-jobs/d53812ce-9186-485d-a388-44bc52087ead'
 \
 -H 'accept: application/json' \
 -H 'Authorization: <API_KEY>' \
 -H 'Content-Type: application/json' \
 -d '{
 "connector_username": "user123",
 "connector_password": "password123"
}'

Once a MaskingJob execution has been initiated, the EXECUTION APIs can be used to view and cancel running
executions as well as search through execution history. Note that canceling an execution is a best-effort action that
does not interrupt any of the job sync that may occur prior to the execution.

Example of searching for executions of a particular MaskingJob:

Data Control Tower – Data Control Tower Home

Continuous Compliance workflows – 145

 'https://<APPLIANCE_ADDRESS>/v3/executions/search' \
 -H 'accept: application/json' \
 -H 'Authorization: <API_KEY>' \
 -H 'Content-Type: application/json' \
 -d '{
 "filter_expression": "masking_job_id eq '\''d53812ce-9186-485d-
a388-44bc52087ead'\''"
}'

Example of canceling an execution if and only if it is in the RUNNING state (denoted by the expected_status
query parameter):

curl -X 'POST' \
 'https://<APPLIANCE_ADDRESS>/v3/executions/11397caa-6006-4eba-b575-ae3ad00c3762/
cancel' \
 -H 'accept: */*' \
 -H 'Authorization: <API_KEY>' \
 -H 'Content-Type: application/json' \
 -d '{
 "expected_status": "QUEUED"
}'

7.4.3.1 User interface
Execute a compliance job with the Execute action, available in the action menu on the top right corner of the job
details page. This will open a window that lists Compliance engines with which a job needs to be executed. Once
selected, click the "Execute" button to start the job on the selected engine. The screenshot below shows a selected
engine.

7.4.4 Migrate job

The Migrate endpoint moves a job from one engine to another without any duplicates. This endpoint is useful for
consolidating masking jobs (i.e. moving jobs to a fresh engine ahead of the original being retired or consolidating
two development engines into a single one for administrative simplicity). This means that a job will continue to
have only a single instance with no additional jobs being created. This job will maintain its same reference within
DCT.

Compliance Engines limit any syncing operations while a profiling or masking job is running. When using
DCT job move, execute, or migrate operations, please ensure that the target Compliance Engine is in an
idle state. Future Compliance enhancements to DCT will remove this limitation.



Data Control Tower – Data Control Tower Home

Continuous Compliance workflows – 146

Example of finding all MaskingJobs originating from engine with ID 2:

curl -X 'POST' \
 'https://<APPLIANCE_ADDRESS>/v3/masking-jobs/source-engines/search' \
 -H 'accept: application/json' \
 -H 'Authorization: <API_KEY>' \
 -H 'Content-Type: application/json' \
 -d '{
 "filter_expression": "source_enigne_id eq '\''2'\''"
}'

Example of migrating a MaskingJob to new source engine with ID 3 and placing it in the ‘prod-env’
environment:

curl -X 'POST' \
 'https://<APPLIANCE_ADDRESS>/v3/masking-jobs/d53812ce-9186-485d-a388-44bc52087ead/
migrate' \
 -H 'accept: application/json' \
 -H 'Authorization: <API_KEY>' \
 -H 'Content-Type: application/json' \
 -d '{
 "target_engine_id": "3",
 "target_environment_id": "prod-env"
}'

7.4.5 Delete job
Calling the DELETE API on a MaskingJob will effectively remove the record from DCT (and its execution history) as
well as delete the actual masking job on the source engine and on any other engine where the job has been copied
to (as a result of execution). The API includes a force option to prevent the action from failing in the event that an
engine is unreachable.

Data Control Tower – Data Control Tower Home

Continuous Compliance workflows – 147

Example of deleting a MaskingJob with the force option:

curl -X 'DELETE' \
 'https://<APPLIANCE_ADDRESS>/v3/masking-jobs/d53812ce-9186-485d-a388-44bc52087ead?
force=true' \
 -H 'accept: application/json' \
 -H 'Authorization: <API_KEY>'

This will return a DCT Job that can be further polled for status updates. Note that if the force option is used and
there are ignored errors, details about those errors will be included in the error_details and warning_message
fields of the DCT Job as follows:

{
 "job": {
 "id": "722ba51cf70e4e32adbd192b07304bb5",
 "status": "COMPLETED",
 "type": "MASKING_JOB_DELETE",
 "error_details": "Unable to connect to the engine.",
 "warning_message": "Failed to remove local MaskingJob, engineId: 3
localMaskingJobId: 7.",
 "target_id": "d53812ce-9186-485d-a388-44bc52087ead",
 "start_time": "2022-01-02T05:11:24.148000+00:00",
 "update_time": "2022-01-02T06:11:24.148000+00:00"
 }
}

Data Control Tower – Data Control Tower Home

37 http://ecosystem.delphix.com

Integrations – 148

8 Integrations
Data Control Tower provides a global integration layer for a connected Delphix ecosystem, whether that is a single
or dozens of globally distributed engines, DCT drive a scalable approach to integrating Delphix into any custom
script or automation toolchain.

Aside from the comprehensive API layer (see API references(see page 150) for more detail), DCT powers automation
through Delphix-built and supported integrations with popular applications such as Terraform, ServiceNow, etc.

To see a current list of Delphix integrations, please visit Delphix Integrations37 for more detail.

http://ecosystem.delphix.com
http://ecosystem.delphix.com

Data Control Tower – Data Control Tower Home

38 http://gateway.example.com/
39 https://pypi.org/project/delphix-dct-api/
40 https://pkg.go.dev/github.com/delphix/dct-sdk-go

Developer resources – 149

9 Developer resources

9.1 API requests and reporting

9.1.1 Introduction
This article showcases example requests to the various data APIs supported by DCT.

DCT provides interactive API documentation that allows users to experiment with the APIs in their web browser.
The interactive API documentation can be accessed by entering the hostname for DCT and the /api path into a
browser's address bar. For example, if DCT is running on host gateway.example.com38, then enter https://
gateway.example.com/api into the browser's address bar.

To simplify development, Python and Go programming libraries are available. The Python bindings can be found
on PyPi here39. The latest version can be installed with the following command:

pip install delphix-dct

The Go bindings can be found on go.dev here40.

9.1.2 Engines
This section showcases some examples of querying the Engines endpoint for information about connected Delphix
Virtualization Engines. These examples leverage the generated Python bindings:

import delphix.api.gateway
import delphix.api.gateway.configuration
import delphix.api.gateway.api.management_api
cfg = delphix.api.gateway.configuration.Configuration()
cfg.host = "https://localhost/v2"

For example purposes

cfg.verify_ssl = False

Replace the string with your own API key

cfg.api_key['ApiKeyAuth'] = 'apk 3.tEd4DXFce'
api_client = delphix.api.gateway.ApiClient(configuration=cfg)
engines_api = delphix.api.gateway.api.management_api.ManagementApi(api_client)
print(engines_api.get_registered_engines())

The result should appear similar to the following:

http://gateway.example.com/
https://pypi.org/project/delphix-dct-api/
https://pkg.go.dev/github.com/delphix/dct-sdk-go
http://gateway.example.com/
https://gateway.example.com/api
https://pypi.org/project/delphix-dct-api/
https://pkg.go.dev/github.com/delphix/dct-sdk-go

Data Control Tower – Data Control Tower Home

Developer resources – 150

{'items': [{'connection_status': 'ONLINE',
 'cpu_core_count': 2,
 'data_storage_capacity': 23404216320,
 'data_storage_used': 11589626880,
 'hostname': 'avm.delphix.com',
 'id': 1,
 'insecure_ssl': True,
 'memory_size': 8589934592,
 'name': 'vmname',
 'password': '******',
 'status': 'CREATED',
 'tags': [],
 'type': 'UNSET',
 'unsafe_ssl_hostname_check': False,
 'username': 'admin',
 'uuid': 'ec2fbfea-928b-07f8-94c4-29fea614624f',
 'version': '6.1.0.0'}]}

9.2 API references
To access the API list for DCT version 8.0.0, click the link below and the .html file with the API content will download.

API 3.3.0 (DCT v8.0.0).h…

(see page 150)

	What is Data Control Tower (DCT)?
	Release notes
	New features
	Release 8.0.0
	Release 7.0.0
	Release 6.0.0
	Release 5.0.1
	Release 4.0
	Release 3.0
	Release 2.2

	Fixed issues
	Release 8.0.1 changes
	Release 8.0.0 changes
	Release 7.0.1 changes
	Release 6.0.1 changes
	Release 6.0.0 changes
	Release 5.0.3 changes
	Release 5.0.2 changes
	Release 5.0.1 changes
	Release 3.0.0 changes

	DCT concepts
	Introduction
	Concepts
	Virtual Database (VDB) groups
	Comparing Self-Service containers to VDB groups
	Bookmarks
	Jobs
	Tags
	Tag-based filtering

	Nuances
	Stateful APIs
	Local data availability
	Engine-to-DCT API mapping
	Local references to global UUIDs
	Environment representations
	Supported data sources/configurations
	Process feedback

	Deployment
	Password policy default enablement
	Supported engine versions
	Kubernetes
	Installation and setup for Kubernetes
	DCT logs for Kubernetes
	Admin topics for Kubernetes

	OpenShift
	Installation and setup for OpenShift
	OpenShift authentication
	DCT logs for OpenShift
	Admin topics for OpenShift

	Docker Compose
	Installation and setup for Docker Compose
	Bootstrapping API Keys
	Custom configuration
	Docker logs
	Migration topics
	Admin topics for Docker Compose

	Engines: connecting/authenticating
	Introduction
	Truststore for HTTPS
	Authentication with engine
	HashiCorp vault
	TLS certificates

	Accounts: connecting/authenticating
	API keys
	Username/password
	LDAP/Active Directory
	SAML/SSO

	Configure LDAP/Active Directory groups
	Active Directory example
	Attributes mapping

	Replace HTTPS certificate for DCT
	External database support
	Overview
	Requirements
	Setup
	Backup and recovery
	External database migration or upgrade
	DCT upgrade

	DCT data backup and recovery
	Data backup of Persistent Volumes used by DCT
	Restore data backup in a new DCT setup

	Exporting DCT logs to Splunk
	Overview
	Setting up a Splunk instance
	Enable Splunk log forwarding
	Search for events in Splunk

	Generating a support bundle
	Find the “collect_bundle.sh” script
	Execute the “collect_bundle.sh” script when DCT is running in Kubernetes
	Execute the “collect_bundle.sh” script when DCT is running in Docker-Compose
	Find the generated support bundle tar file

	Data governance
	DCT administration
	Tags
	Authentication
	Access groups
	VDB templates
	API metering
	Client telemetry

	Central governance workflows
	Managing engines (Continuous Data)
	Managing dSources
	Managing VDBs
	Managing environments (Continuous Data)
	Managing bookmarks
	Insights

	Continuous Data workflows
	DevOps TDM
	Developer experience
	Self-service vs. DCT developer experience
	Key similarities
	Key differences

	Creating and managing bookmarks
	Create new Bookmark
	Bookmark API Documentation
	Create a Bookmark at the current time for multiple VDBs
	Create a Bookmark for a VDB from an existing Snapshot
	Create a Bookmark for a VDB from an existing Snapshot

	VDB operations
	VDB provision UI
	VDB refresh UI
	Active timelines UI
	Timeline history UI

	Continuous Compliance workflows
	Listing and searching compliance jobs
	Consolidated operations (intelligent syncing)
	Managing engines (Continuous Compliance)
	Engine overview
	Engine-based operations access

	Compliance jobs
	Job UI
	Copy job
	Execute job
	Migrate job
	Delete job

	Integrations
	Developer resources
	API requests and reporting
	Introduction
	Engines

	API references

