Data Control Tower Home

Data Control Tower

Exported on 08/15/2023

Data Control Tower - Data Control Tower Home

Table of Contents

1 Whatis Data Control TOWEN (DCT) 7 u.eiiueiiicieeeeeieeeeeitee et cereeecerreeeeenvaee s 6
2 RelEASE NOTES ...ttt 7
2.1 NEW FRATUIES .ttt ettt ettt b et b et a et n s 7
21,1 RELEASE 3.0ttt e e h bt a et s st s bt ees et n et a et nen 7
0 T O Y o L OO P PO PROPRPPIN 7
0 T A U TP P PP PROPRPPIN 7
21,2 RELEASE 2.2ttt h e a ettt s e bt b et s n et nen 7
0 00 T D 1= o (oY o 4 1= o OSSR SRR 7
2.1.2.2 APIS ettt bbb e bt bt e Ra e s b e e bt e bt e s bt bt e bt e e b e s b e e bt e beesanesnre e 7
2.1.2.3 Ul b bbbt s e b e bt e R s bt e bt e bt e s bt et e s bt e e R b e s b e s bt e beesabesare e 7
2.2 SUPPOIT MATIIXuriiiiiieiiieeiiieeiieesitee ettt este e st e e sreesssaesssbeesssaesssteesbaessssaesssaessssaessssessaseessssesssseesnnes 8
3 DCT CONCEPLS weeeeieeiirreeeeriiirteeeesiirteeeesssirreeeeesssreeeessssssreeesssssssaeesssssssseeesssssssneessns 9
3.1 INEFOAUCTION ettt st sttt 9
3.2 CONCEPES ttieeittee ittt ettt ettt e ettt e e ettt e e st e e s s ab e e e e st e e e s ba e e e s e rr e e e e earb e e e e raaeesnraeesenraeeeenraaens 9
3.2.1 VDB GOUPS ceueiiiiiitieieete ettt sttt sttt ettt bbb bbbt e aa e s b e e bt e bt s b e b e e bt e s R b e s b e s bt e bn e s b e sareeas 9
3.2.2 Comparing Self Service CONtaiNers t0 VDB ZrOUDPS ...ccoeirteirieririeienieieieieteteessesessesesesesesensesesessesessesessesensesenseses 9
3.2.3 DCT BOOKMAIKS....c.ecueueeveuiteirtcirteitrte ettt sttt st ettt b ettt et a et s a e e st sa et et sa et et e b e e n et s et naeneneenens 10
3204 DT JODS ittt ettt h ettt et h et st et na st e nen 10
0 T 1= <L F PSP PUT PP PP 10
3.2.6 TAG-BASEA FIlEEINE .ttt ettt b s b sttt et s b e st et e st et e st e b e b e b et enteneebesbeneeneen 11
TR T [= T Lo LR 11
3.3.1 SEALEIULAPIS ettt ettt ettt e bbb bttt e b b et e 11
TR 0 o Yor- | WD - IV Y1 - o 1 U3 YT 11
3.3.3 ENGINE-LO-DCT APl MAPPING .ecutiriritetiriierenieetesteete st e e st st e sb e et eseesatetesbe st e s e e st et e sseeseebesseensesseeneensesneensensens 12
3.3.4 Local references to GLODal UUIDS........coccerirrieieiciiniieieietrenieie ettt ettt sttt e bbbt se e e besenenens 12
3.3.5 ENVIronment REPreSENTATIONS c..iiiiiiieiieeiieeteee ettt et s ettt s b s be et e e baesabesbeesbaesabessnesnseenssessnenases 12
3.3.6 Supported Data SOUrces/CONFIGUIAtIONS ...cc.vicirieirieirieirteetee ettt ettt et s e se bt sbenessenens 12
337 ProCESS FEEUDACK ...euvviuitiirtciicetcee ettt ettt ettt sttt n et sa et ne e 13
3.4 APIMetering INSEIUCTIONS .cueeiiieieeeeeee ettt st sne e e s e sneens 13
4 DEPLlOYMENT ..ttt a e e a e e s be e e baesaae s 14
4.1 DOCKEI COMPOSE ..coueiiuiiiiiteniteieeitesteete st et e st et e saeeste st e b e st essesatesse st e sseestesseesbesseesesaeesesneenses 15

Data Control Tower - Data Control Tower Home

4.1.1 Installation and setup fOr DOCKEr COMPOSEccivvirieieieiieieienieieieteestessesseseeseesessessessessessesessessessensessesessessensenes 15
4.1.1.1 HAardWare rEQUITEIMENTSc.eeiiririeiereieirteieteuestststesesesesessesesesesesessssesesesessssesesesessssesesesesensssesesesensnsesesesenensssesesesenes 15
4.1.1.2 Installation requirements (DOCKETr COMPOSE)evviruerierieieerresieieteteessessesesseseesessessessessessesessessessessessesessessensenss 15
4.1.1.3 UNPACK @NA INSTALL DCT..uiiiieiieiieiieisiisieieteeseeteste et tee e stesae st e e e sse st e s esseseeseesassassessassesessessessensensensesessensensanes 16
114 RUN DCT ittt ettt ettt st e bt st e st e e e st e s b e e s at e s ab e s bt e e st e s st e s b e e bt e bt e sabeesbe e st e sabesabeeabe e beesasesaseeasaesnsennsenane 16
4.1.2 BOOTSLrAPPING APIKEYS ..ottt ettt ettt ettt bttt et e b bbbt e bbb s b et et et e st s b sa e benee 17
4.1.3 CUSEOM CONTIGUIATION 1ttt ettt ettt ettt bbbt et e b et b e st b e b e s ebentenen 18
4. 1.3.1 INTFOAUCTION 1ottt ettt ettt ettt ettt s bbb bt e bttt e st et e st e bt s e bt e s et ebe st et e st b e st b enebes e sesenbenen 18
4.1.3.2 BINA MOUNES 1.ttt ettt ettt ettt ettt s bbb s bbb e st e b e st b e st s e st b e b et e b et et e st ebe st et ene b eseasebentenen 18
4.1.4 (3.0.0)Connecting @ DelPhiX ENGINE ...c.coueirieiriiiirieieieieirietrtetst ettt ettt ettt ettt ettt b bbbt nen 19
4141 INTFOQUCTION ceviiieiitetitet ettt ettt ettt ettt ettt s bbb bt e bt b et et e st b e bt s e st b e b et ebe st et et be st b ene b ebeasesentenen 19
4.1.4.2 TruSESTOTE fOr HTTPS .ottt ettt ettt ettt ettt s bbb e bbbt e b et be st b ene b ese s esentenen 20
4.1.4.3 Authentication With the ENEINE ...ttt ettt sttt se e nen 20
A.15 DT LOZS cuvveuireeuirieuirtetirtetetetet ettt ettt eb et bt b et et e et e st b e st b e st e s et e b et e b ea e et e st b e s et eb e b e b et esea b et e st b e st b enebeseasebenbesen 23
4.1.5.1 AAMIN TOPICS cttutteuirtetirtetetetet ettt ettt eb bbbt b et et e st et e s et e st e s et e b et e b eatebes e b es et eb e b e s ea s e s eatebe st esese b ene b eseasesentesen 23
4.2 KUDEINELES ..ottt ettt et e st e s b e bt e s s b e st e e be e sae st e e be e baenatens 25
4.2.1 Installation and SEtUP fOr KUDEIMETESc.ccvvieuiriirieieieieeeesteee ettt et be st se s e s enessessassanes 25
4.2.1.1 HAardWare FEQUITEIMENTS ..cuivveieieieeriesietestesteeesessessesseseesessessessessessessesessensensesseseesessessessessessesessessensensessessesessensonss 25
4.2.1.2 Installation requireMents (KUDEIMELES)cveieiririerieicieieesteete sttt eresbe st e s e esessestessessessesassessassanes 25
4.2. 1.3 INSEALLINE DCT ettt ettt ettt ettt ettt sttt s et bbbt b et et e st b e st b e st b e bt e b et et et e b e st b ene b eseasesentesen 26
4.2.2 DCT LOZS fOr KUDEIMELES ...ttt ettt ettt ettt ettt bbbttt b et b e st e b b ebentenen 28
4.2.3 AdMin tOPICS fOr KUDEIMELES......ciiiviiriiieieteeeeese ettt sttt sttt e e ebeeba b e s et eseeseese st essensessesessessansanes 28
4.2.3.1 Deployment upgrade fOr KUDEIMELEScouciviiiririeiriceiee ettt 28
4.2.3.2 Factory reSet DCT fOr KUDEIMEELESccuvueirieiieieiet ettt ettt ettt ettt ettt b et se b nen 30
4.3 OPENSNITt.ciitiiciicieeceee ettt ettt e e b e ra e e a e e ba e ba e e b e e be e baesraesabeebe e raenaaens 30
4.3.1 Installation and Setup fOr OPENSRIft......c.ccieiiiriiiieeeeee ettt be st st seesesse st e sanes 30
4.3.1.1 HAardWare rEQUITEIMENTS ..cuivveveieieesiesieieteteeesessessesseseesessessessessessessesessensensessessesessessessessessesessessensessessessesessansones 30
4.3.1.2 Installation requirements (OPENSIITL).....cc.ccieieirireieeeeee ettt s be st st ss e sessessessanes 30
4.3.1.3 INStALlatioN PrOCESS...ciuieiriirierieieieestestet ettt et e e e et e tesbesae st e st eseese st assessesseseesessassassaseeseesassessensensensesessensansanes 31
4.3.1.4 CONFIGUIE INGIESS ..ottt ettt ettt ettt ea bttt b et b et et st e bt b e st b e bt e b et et et b e st b ese b eb e sebenbenen 34
4.3.2 OpenShift QULNENTICAtION c.cviuieieiciceee ettt ettt et e s e e e seeseebe st essessennesessessansanes 36
4.3.2.1 INTFOQUCTION .ttt ettt ettt ettt a bbb b et e bttt e b e st b e bt s e st s e b et e b et et et b e st b enebesensesentesen 36
4.3.2.2 Enable OAULh2 authentiCationccuveirieieieeieet ettt ettt ettt 36
4.3.3 DCT LOZS fOr OPENSIIft....iiitiieiiieicirieeriei ettt ettt ettt ettt b e bbb et e e b et be st bese b ebentenen 37
4.3.4 AdmMin topiCs fFOr OPENSIITL ..cuveuiiieicirieeeree ettt sttt et e b et e e e s e eseebesbe st ensennesessessansanes 37

Data Control Tower - Data Control Tower Home

4.3.4.1 Deployment upgrade for OPENSIIft........ccveiriiiririeiceere ettt ettt nen 37
4.3.4.2 Factory reset DCT fOr OPENSIIfl.....iiiciciecieieeeirese ettt sttt ettt r st b e s e e e esasaesbessensessesessessansanes 39
4.4 Engines: connecting/authentiCating........cccoeoueiviiniiniiiiiiinectee e 39
441 INEFOAUCTION Leviiiiiieieiciiii ettt ettt st sttt s b ettt a b bt seen b seais 39
4.4.2 TrustSTOre fOr HTTPS ..ottt ettt sttt sttt s n b 39
4.4.3 AULhentication With @NEZINEc.coi ittt ettt b bbbt b et bbb b tenen 40
444 HAShICOIP VAUIL.c..eieeeiieiiiieteetee sttt sttt et ettt e st e st et e e st ese st e s esseseesessaebassessaseeseeseesessensensensesessensansanes 40
4.4.4.1 Vault authentication and re@iStration..........civ ettt ettt enen 40
A48 2 TOKEM ittt ettt et st st sttt a ettt ettt a b bt n b 40
O I Y o] o] 2L] L= OO OO RO 41
445 TLS COIICAtOS ettt ettt sttt sttt 42
4.4.5.1 RetrieVing €NgiNe CreENTIAIS . ..ccueueirieirieietet ettt ettt ettt et b bbb st e s e b ebentenen 42
4.5 Accounts: connecting/authentiCatingcoceeviiriiiriiiiiiinieeectere e 42
45,1 APIKEYS..euietietirieieteesttetestestesteteseetestestesteseesessesses s e se st esees e e b e e s et e Rt e Rt e Rt e R e es e s b e Rt e Rt e Rt eh e b e s b e st e Rt e Rt e s e ebeebe s e st enteneeae et ansanes 43
45,11 AP KEYS..ecuietisiisieieteeeitetestestetesteseesessessesseseesessessassassesseseeseasasassessessestase st ansensestese et e ebansensare e s e et eebe et et enteneeseese et ensanes 43
4.5.2 USEINamME/PASSWOIT....ecirierierrerieietisiestetetetesessessessesteseesessessessessessessasessensensenseseesessessensessessesessessessessessesessessansones 44
4.5.2.1 PASSWOIT POLICIES 1.veveevietiriinieieieieestestetet et eestessestesteseesessessesaeseesteseesessassessensesessassassessasseseesessessensensesseseesensansenes 46
4.5.2.2 Understanding passWord POLICIES.cuvueereiririiririeieieteietrte sttt ettt ettt et et sb et be s b st e s b esesenen 46
4.5.2.3 Default PASSWOIA POLICY .icvirieieiieeieiriirieieieteeeies ettt s ettt et ere st e bt e e e sessassabe s aseeseeseesessensessensesessensansanes 46
4.5.2.4 Changing the PasSWOId POLICYe.ecirueirieirieiiieiertet ettt et ettt eb et b et b st e s sesentenen 46
4.5.2.5 Disabling local username/password aUthentiCationc.eccveirieirirerinieiniee ettt 47
4.5.3 LDAP/ACEIVE DIrECEOIY ..eitiriiriierierieeienieetentesieetestestessesteesestestessesseessesesssessessesssessesssensessasssensesssensessesnsenseseensesses 47
4.5.3.1 CONFIGUIALION L.ttt ettt ettt b ettt b st b e bt s e bt e b et e bt eb et b e st b ene b eseasebentesen 47
454 SAML/SSO .ttt h e et h e bttt a e bbb e b et e b e b b s b et et et st ae e e teaee 52
4.5.4.1 1deNtity PrOVIAEI SETUD couivvirieieieieisiesieieteteee et e et e et e te st e ste st et e e esess e sesseseesessassassessaseeseesessessensensessesessensansanes 52
4.5.4.2 DCT SAML/SSO SEEUP c.vteutiiiriiiienieeierieeteste st etestesitetestesstessesatessesseensessesssessessesssessesssensensasssensesssensessesnsensessensesses 53
A543 LOGIN cutitiiieetetetet ettt ettt ettt sttt h bbbt R Rt h e sttt h e bbbt et e b e e bt b s bt et et besaese et enee 54
4.5.4.4 TrOUDLIESNOOTING. ...cveuititiiet ettt ettt ettt b bbb e bbbt eb et be st b ebe b e b e b ebentesen 54
4.6 Configure LDAP/ACtIVE DIir€CtOrY SrOUPS ...covververierierieeienteetesieeresteesesseesessesssessesssessesssessens 55
4.6.1 ACHIVE DIr€CTONY EXAMPLE c.uiuiieieiieiieiietisieeee ettt ettt ettt et et st et et e e e s e esasb e b e s eseeseeseesestensensensesessensansanes 56
4.6.2 ALLIIDULES MAPPING cvvititiietitrieietet ettt ettt ettt ettt ettt bbbt b et e b e st b e bt b e st b e s et ebe st et e st esest b ene b esensesentenen 57
4.7 Replace HTTPS certificate fOr DCTuiiiiicieeieeeeectecie ettt ere e e s aesveeeveessaesneeveensaesnnens 59
5 DCT adminiStration ...cccccoeecierirrieeiieneeienteseeteseeste sttt st sreetesaeessesaeesaesaees 60
5.1 AUTRENTICATION oottt b e s b e st sae e sne s 60

Data Control Tower - Data Control Tower Home

5.2 ACCESS GIOUPS .ceiiiiuiieeieiitetieiitteeteitteeesitteesessreeseesttessssaeesssssaeesesssteesssssaessasssaessesssnesssnsseesssnsnes 60
5.2.1 ACCESS GrOUP STIUCTUIE ..ttt ettt ettt ettt ettt s b s b e e bt e s at e s b e e b e e bt e sabesabe s bt esatesanesabeesseenanenases 61
52,2 ACCOUNTS ittt e b e b b e h et b e R bbb e e e bR bbb e b b e a et sas b b 61
5.2.3 ROLES et b et r et a et aenea 62
5.2.3. 1 AAMIN TOLE ottt b et sttt bbb bbbt a b 62
5.2.3.2 MONITOT FOLE ...ttt st a et b bbbt bt sa e saenens 63
5.2.3.3 DEVOPS FOLE ettt ettt sttt et st e st e sae st e b e e st e st et e e se e aesaeense s b e e st en b e e bt e Rt e sae e st et e e st enbebeesaebesaeenbenbeen 63
5.2.3.4 MASKING FOLE .ottt ettt sttt ettt s b st e b e s st et e st e e st e aesaeenbesbeeasenseeseentesaesstensasssensenseesaensesaeensansens 63
5.2.3.5 OWNET TOL@ vttt s b et bt s a et a et bbbt a et sa et a b 64
5.2.4 Example CONfIgUIation SCENATIO ..c.ciiviriirieieieisiesiesiet ettt et e e e ste st e et esseste s essesaeseesessassessesseseesassessensan 64
5.2.4.1 Data @SSUMPLIONS cuveruiiiiiieiieienitetente st este st et este s e estestestesse s st essesseessessesasensessesnsensesseensessesnsensesssensensesssensesseesensens 64
5.2.5 USEIINEEITACE ettt ettt st b et 68
5.2.5.1 COPY Ol SCOPE.c.utiutiriiiietieiteiesitete st st e ste st et e te st este s st st esbe s st essesseessesaesaeessesseestensesseentessesssensenssensensesssensesseensensens 68
5.2.5.2 DElEte 1Ol SCOPE. .ottt sttt ettt et s e st e st e et e st e st e et eesae s st enbesseeatenbeeseentesaeestenbaestentenbeesaebesaeenbensees 68
5.2.6 AQVANCEA SCOPE LY PO uiuiiririiiiiiieterie sttt ettt et ste st e st e et et e s bt e st e saesaeestesbasasensesseestessesssensasssensensesssensesssensensens 69
6 Central ManagemENTc.uoiiiiiiiiicieceet ettt re e sae e s a e st e aeesaaesaeens 71
6.1 INFrASTIUCTUIE .ottt 71
6.2 Data ODJECT LISTS wieuiiriiiieiiiesieeieet ettt ettt ettt et st e bt e sab e st e et esaaesbe e beessaesanesane 71
6.3 ComMPlianCe INFraStrUCTUIE ...ccviiieeieeceecte ettt et r e s re e e s are s beebe e anesane e 72
T INEEEIATIONS .ttt e s e s s abe e s s are e s s sasee s snraeesnreeeeans 73
8 DEVEIOPEN FESOUICESvveeeereeeieeeeireeeteeeette e teeeteeesteeeesteesseeseseeessseessseesseeensees 74
8.1 APl requeStS and rEPOITING ...cccerrieirierieeiteritesteete et estessteebeesseessesbesssaesssesssesssaesssesssesseens 74
8.1.1 INTrOAUCTION .ottt st a et b bbbt bt sae e saenens 74
812 ENEINES ceteteeieieetete ettt et ettt et e st st et e b et et e et e st e s he e st e b e e h e e Rt e bt e Rt e ae e ae et e b e e Rt e Rt e e Rt e Rt e eh e e Rt e beehtentebeesaetesaeenbenbens 74
8.2 APITEfOIONCES. ...ttt 75

Data Control Tower - Data Control Tower Home

1 What is Data Control Tower (DCT)?

Data Control Tower (DCT) is a unified data management platform used to enable API-driven DevOps workflows with
Continuous Data and Compliance, and centrally manage the entire data estate for all Delphix users. The core of DCT
focuses on a centralized, container-based deployment architecture with a robust API library that enables
automation and management across multiple Delphix Engines. The DCT container form factor allows users to self-
host on their preferred public or private cloud environment.

In addition to APIs, DCT offers a central management User Interface to visually surface curated inventories of its
connected ecosystem (engines, dSources, VDBs, etc.) as well as insights in the form of reporting dashboards.

What is Data Control Tower (DCT)? - 6

Data Control Tower - Data Control Tower Home

2 Release notes

This section is used to learn what the newest version of Data Control Tower has to offer. In addition, the fixed and
known issues per version are detailed.

2.1 New features

2.1.1 Release 3.0

2.1.1.1 APIs

+ Cluster Node (RAC) management APIs

+ Ability to disable username/password authentication globally
+ LDAP/Active Directory groups

« CDBs/vCDBs APIs

« VDB Provisioning / update for EDSI (AppData) platforms

2.1.1.2 Ul

« Engine registration wizard
» Access Groups Management Ul
« Compliance Engine Management

2.1.2 Release 2.2

2.1.2.1 Deployment
+ Introducing Kubernetes and OpenShift support

2.1.2.2 APIs

«+ Registration of Continuous Compliance Engines

« Masking Connectors

+ “Move Masking Job”

« Masking of mainframe objects

« Provisioning enhancements for Oracle multi-tenant and RAC

« LDAP/Active Directory authentication

+ Password management

« Initial access management by Permissions, Roles, Policies, and Access Groups (permissions applied to all
objects of a type e.g. Stop VDB permission on all VDBs)

« Distributed tracing and logging (Trace ID propagated down call stack)

« Bulk delete of tags

2.1.2.3 Ul

» Continuous Data

Release notes - 7

Data Control Tower - Data Control Tower Home

+ Added tag support to the Infrastructure page
+ New dSources page
« New VDBs page
+ Insights
+ Added an export behavior to the Storage Summary report
« New dSource Inventory report
+ New VDB Inventory report
« Admin
« New Accounts page

2.2 Support Matrix

Data Control Tower has minimum engine versions that are actively tested against to ensure optimal
interoperability. Please ensure that all connected engines meet the version requirements:

« Continuous Data Version: 6.0.0.1 and above
« Continuous Compliance Version: 6.0.13.0 and above

Release notes - 8

Data Control Tower - Data Control Tower Home

3 DCT concepts

3.1 Introduction

Data Control Tower provides new and novel approaches to general Delphix workflows, delivering a more
streamlined developer experience. This article will introduce these concepts to Delphix and how they work with
DCT.

3.2 Concepts

3.2.1 VDB groups

VDB groups are a new concept to Delphix that enables the association of one or more VDBs as a single VDB group.
This allows for bulk operations to be performed on the grouped VDBs, such as bookmark, provision, refresh, rewind,
and others. This will assist in complex application testing scenarios (e.g. integration and functional testing) that
require multiple data sources to properly complete testing.

With VDB groups, developers can now maintain data synchronicity between all grouped VDBs, which is particularly
useful for complex timeflow operations. For example, updating VDBs to reflect a series of schema changes across
data sources, or to reflect an interesting event in all grouped datasets. In order to maintain synchronicity among
grouped datasets, timeflow operations (refresh, rewind, etc.) must use a bookmark reference.

Bookmarks and VDB groups are loosely related; a VDB group can exist in the absence of any bookmarks, and a
bookmark can exist without any VDB group. It is important to note that the bookmark represents data, while the
VDB group represents the the databases to make this data available.

() Additional Information
Bookmarks can be generated from VDB groups and can be shared with compatible VDB groups (having the
same underlying databases).
DCT will automatically stop an operation from executing if one or more objects are incompatible (e.g.
provisioning a VDB group into a set of environments, where one of the VDBs is incompatible, such as an
Oracle on Linux VDB provisioned onto a Windows environment).
VDB groups based operations will return a single Job to monitor the overall status of the series of
individual VDB operations. If one of those individual operations is unable to complete, DCT will report a
“fail”, but any individual operations that are able to successfully complete will still do so.

3.2.2 Comparing Self Service Containers to VDB groups

As mentioned above, VDB groups are a crucial DCT concept that enables Self Service functionality outside of the
Self Service application. One can consider VDB groups to act similarly to Self Service containers, in that it provides
grouping and synchronization among VDBs, but VDB groups can provide a more flexible approach for users.
Additional points for example:

« The same VDB can be included in multiple VDB groups

« Including a VDB in a VDB group does not prevent operations on the VDB individually
+ VDBs can be added to or removed from VDB groups

« VDB groups do not have their own timeline

DCT concepts - 9

Data Control Tower - Data Control Tower Home

3.2.3 DCT Bookmarks

DCT Bookmarks are a new concept that represents a human-readable snapshot reference that is maintained within
DCT. This is not to be confused with Self Service bookmarks that are maintained separately within the Self Service
application. With DCT Bookmarks, Developers can now reference meaningful data (e.g. capturing a schema version
reference to pair with an associated code version, capturing test failure data so that developers can reproduce the
error in a developer environment, etc.) and use those references for any number of use cases (e.g. versioning data
as code, quickly provisioning a break/fix environment with relevant data, etc.). DCT Bookmarks are compatible with
both VDBs and VDB groups and can be used as a reference for common timeflow operations such as:

+ Provisioning a VDB or VDB group from a bookmark

+ Refreshing a VDB or VDB group to a bookmark

« Rewinding a VDB or VDB group to a bookmark

+ Share (Refresh a VDB or VDB group from a compatible sibling VDB or VDB groups’ bookmark) bookmarks
with a compatible testing environment

() Additional Information
DCT Bookmarks have associated retention policies, the default value is 30 days, but policies can be
customized anywhere from a day to an infinite amount of time. Once the Bookmark expires, DCT will
delete the bookmark.
Bookmarks are compatible with individual VDBs and VDB groups. Bookmark Sharing is only available for
engines 6.0.13 and above.
DCT Bookmarks, when created, initiates a snapshot operation on each and every VDB in order to maintain
synchronicity between each VDB. In that same vein, bookmark-based VDB group operations will have each
VDB-specific sub process run in parallel (as opposed to sequentially) to reduce drift between grouped
VDBs.
Creating a bookmark for a point in time in the past, or for dSources, is not possible.

3.2.4 DCT Jobs

Jobs in DCT are the primary means of providing operation feedback (PENDING, STARTED, TIMEDOUT, RUNNING,
CANCELED, FAILED, SUSPENDED, WAITING, COMPLETED, ABANDONED) for top level operations run on DCT. Top
level operations represent the parent operation that may have one or more child-based jobs (e.g. refreshing a VDB
group is the parent job to all of the individual refresh jobs for the grouped vdbs under the VDB group
reference).

() Additional Information
Top-level jobs will report a “FAILED” status if one or more child jobs fail. For child jobs that can complete,
DCT will continue to complete those jobs even if a parent job reports a failure.

3.2.5 Tags

DCT Tags enable a new business metadata layer for users and consumers to filter, sort, and identify common
Delphix objects, to power any number of business-driven workflows. A tag is comprised of a (Key:Value) pair that
associates business-level data (e.g. location, application, owner, etc.) with supported objects. The DCT 2.0 release
supports the following Tags:

+ Continuous Data Engines
« Environments

DCT concepts - 10

Data Control Tower - Data Control Tower Home

« dSources
« VDBs

Developers and Administrators add and remove tags using tag-specific object endpoints (e.g. /vdbs/{vdbld}/tags)
and can leverage tags as search criteria when using the object-specific search endpoints (i.e. using filtering
language to narrow results).

A few sample tag-based use cases include:

+ Refreshing all the VDBs owned by a specific App Team using an “Application: Payment Processing” tag. This
would be accomplished by querying “what VDBs have the (Application: Payment Processing) tag" and
feeding those VDB IDs into the refresh endpoint.

« Driving Accountability for VDB ownership by tagging primary and secondary owners for each VDB (e.g.
(primary_owner: John Smith), (secondary_owner: Jane Brown)). That way, if a VDB is overdue for a refresh,
tracking down an owner is a simple tag query.

() Additional Information
Tags are registered as an attribute that is specific to an object as opposed to a central tagging service. As a
result, tag-based querying can only be done on a per-object type basis.
A supported object can contain any number of tags.

3.2.6 Tag-Based Filtering

All taggable objects support tag-based filtering for APl queries that adhere to the search standards documented in
AP| References 2.0%. A few examples of how tag-based filtering can be used are as follows:

List all VDBs of type Oracle, of which ip address contains the “10.1.100” string and which have been tagged with
the “app-dev-1” team tag:

database_type EQ 'Oracle' AND -ip_address CONTAINS '10.1.100' and tags CONTAINS { key
EQ 'team' AND value EQ 'app-dev-1'}

3.3 Nuances

3.3.1 Stateful APIs

All applicable DCT APIs are stateful so that running complex queries against a large Delphix deployment can be
done rapidly and efficiently. DCT accomplishes this by periodically gathering and hosting telemetry-based Delphix
metadata from each engine.

3.3.2 Local Data Availability

DCT currently relies on existing Continuous Data and Compliance constructs around data-environment-engine
relationships. This means that DCT operations require VDBs to live on the engine where the parent dSource lives
and so on.

1 https://docs.delphix.com/display/DCT/API+References+2.0

DCT concepts - 11

https://docs.delphix.com/display/DCT/API+References+2.0
https://docs.delphix.com/display/DCT/API+References+2.0

Data Control Tower - Data Control Tower Home

3.3.3 Engine-to-DCT APl mapping

Wherever possible, DCT has looked to provide an easier-to-consume developer experience. This means that in some
cases, an APl on DCT could have an identical APl on an engine. However, there are many instances of providing a
higher level abstraction for ease of consumption - one example is the data inventory APIs on DCT (sources,
dSources, vdbs), which are a simplified representation of data represented by the source, sourceconfig, and
reporsitory endpoints on the local engine (source, dsource, and vdb detail are all combined under those three
endpoints).

3.3.4 Localreferences to Global UUIDs

In order to avoid collision of identically-named and referenced objects, DCT generates Universally Unique
IDentifiers (UUID) for all objects. For existing objects on engines like dSources and VDBs, DCT will concatenate the
local engine reference with the engine UUID (e.g. “Oracle-1” on engine “3cec810a-ee0f-11ec-8ea0-0242ac120002”
will be represented as “Oracle-1-3cec810a-ee0f-11ec-8ea0-0242ac120002” on DCT).

3.3.5 Environment Representations

Environments within Delphix serve as a reference for the combination of a host and instance. This is coupled with
the fact that environments can be leveraged by multiple engines at the same time and that engines often have a
specific context to some of the elements that comprise an environment. For example, an environment could have
both an Oracle and ASE instance installed and that Engine A leverages an Oracle-based workflow and Engine B
leverages an ASE workflow. DCT will create two identifiers to represent the specific host and instance combinations.
Thus, in DCT, Engine A will be connected to a different uniquely identified Environment than Engine B.

As mentioned earlier with Engine-to-DCT APl mapping, DCT aims to simplify the user experience with Delphix APIs
by combining different continuous data endpoints into a simplified DCT API. The Environment API does this by
combining environment, repository, and host endpoints so that writing queries against Delphix data is a much
simpler process. One example would be identifying all environments that have a compatible Oracle home for
provisioning:

repositories CONTAINS { database_type EQ 'Oracle' and allow_provisioning EQ true AND
version CONTAINS '19.2.3'}

3.3.6 Supported Data Sources/Configurations

DCT is currently compatible with the following data sources and configurations supported by Delphix:

+ Oracle Single Instance

+ Oracle Clusters

+ SQL Server Single Instance

« SQL Server Cluster (Availability Groups)
+ ASE Single Instance

« ASE Clusters

DCT concepts - 12

Data Control Tower - Data Control Tower Home

3.3.7 Process Feedback

Whenever a DCT request completes, it will return a JOB ID as its response. This Job ID can be used in conjunction
with the jobs endpoint to query the operation status.

3.4 API Metering Instructions

DCT employs a per APl consumption model, which requires APl metering and periodic reporting to Delphix
Customer Success. To support reporting of APl consumption, DCT offers an APl consumption reporting endpoint:
“api-usage-report”. This report will provide a list of all unique APl endpoints and how often they were used over the
specified time period sorted by APl and method.

Required Inputs:

« File Type: CSV or JSON (CSV file types are compatible with most spreadsheet-style software like excel or
google sheets)

« Start/End Date (default start date is “when DCT was installed” and default end date is the “time when the
report was generated”)

Example cURL call:

curl --location --request GET 'https://[Inser_DCT_Server]/v2/reporting/api-usage-
report/?end_date=2022-06-14T09:00-04:00&start_date=2022-06-01T00:00Z" \

--header 'Content-Type: application/json' \

--header 'Accept: text/csv' \

--header 'Authorization: apk 1.xxxxxxxx'

Example Output:

api_endpoint,api_method,api_count
"/v2/management/api-clients",GET,2
"/v2/management/engines",GET,1
"/v2/management/engines/search",POST,1
"/v2/reporting/api-usage-report",GET,2

DCT concepts - 13

Data Control Tower - Data Control Tower Home

4 Deployment

Data Control Tower is a container-based architecture and is currently certified with Kubernetes and OpenShift to
align with common enterprise container standards. The DCT architecture is comprised of multiple micro-services
that are each run on individual pods. This lends DCT to be a highly flexible and resilient deployment by enabling
customers and IT organizations to enact their own backup, scaling, and resiliency standards associated with
hosting container-based applications. Below is an architectural diagram of all the services that make up DCT as well
as the persistent storage for maintaining relationship metadata.

Kubernetes Cluster
Worker Node \
Namespace \
CEiSEpices @ ul 7@ data-bookmarks ITD

/®@Graphm 7@ data-library < _.‘@ Po@
@ @& , %,\

Port 443, 80] o jobs >

Y

Port 443, 80

N @ Y,

@ Persistent Storage v \
gateway-data _— gwdatabase-data
L 9 (168) = (wGB)/
-

DCT is multi-cloud enabled, which means that a single DCT instance can be deployed to orchestrate (via HTTPS)
Continuous Data and Continuous Compliance workloads with Delphix engines located in other networks.
Alternatively, DCT can be localized to engines located within a network. DCT is a lightweight management
application, which means that it does not require a highly performant connection to complete its work and can
serve as a central management layer for Delphix engines globally.

Deployment - 14

Data Control Tower - Data Control Tower Home

()() Delphix

Continuous Data Engine

This section will explain all of the required steps to deploy DCT on your container platform of choice.
4.1 Docker Compose

4.1.1 Installation and setup for Docker Compose

4.1.1.1 Hardware requirements

The hardware requirements for Data Control Tower are listed below. In addition to these requirements, inbound
port 443 must be open for API clients, and outbound port 443 to engines.

CPU: 4-Core
Memory: 2GB
Storage: 50GB
Port: 443

4.1.1.2 Installation requirements (Docker Compose)

DCT requires Docker and Docker Compose to run, thus, Linux versions and distributions that have been verified to
work with Docker are supported. To see a list of supported distributions, please reference this Docker article?.

This example uses a Docker installation® and is completed on an Ubuntu 20.04 VM.

To begin, uninstall any old versions of Docker.

sudo apt-get remove docker docker-engine docker.io containerd runc

2 https://docs.docker.com/engine/install/#server
3 https://docs.docker.com/engine/install/

Deployment - 15

https://docs.docker.com/engine/install/#server
https://docs.docker.com/engine/install/
https://docs.docker.com/engine/install/#server
https://docs.docker.com/engine/install/

Data Control Tower - Data Control Tower Home

Next, update the package lists and install Docker.

sudo apt-get update
sudo apt-get install docker.io

Last, install Docker Compose®.

sudo curl -L "https://github.com/docker/compose/releases/download/1.29.1/docker-
compose-$(uname -s)-$(uname -m)" -o /usr/local/bin/docker-compose
sudo chmod +x /usr/local/bin/docker-compose

a Docker-Compose is packaged with Docker engine version 20.10.15 and up.

Running Docker as non-root (optional)

To avoid prefacing the Docker command with sudo, create a Unix group called docker and add users to it. When the
Docker daemon starts, it creates a Unix socket accessible by members of the Docker group. See Docker Post
Installation® documentation for details.

sudo groupadd docker
sudo usermod -aG docker $USER

4.1.1.3 Unpack and install DCT

Once Docker and Docker Compose are installed, DCT can be installed. Begin by downloading the latest version of

the tarball from the Delphix Download site®. Next, transfer the file to the Linux machine where Docker is installed.
Run the following commands to extract the containers and load them into Docker:

tar -xzf delphix-dctx.tar.gz
for image in x.tar; do sudo docker load --input $image; done

4.1.1.4 RunDCT

To run DCT, navigate to the location of the extracted docker-compose.yaml file from the tarball and run the
following command. Using —-d in the command will start up the application in the background.

sudo docker-compose up -d

4 https://docs.docker.com/compose/install/
5 https://docs.docker.com/engine/install/linux-postinstall/
6 https://download.delphix.com/folder

Deployment - 16

https://docs.docker.com/compose/install/
https://docs.docker.com/engine/install/linux-postinstall/
https://download.delphix.com/folder
https://docs.docker.com/compose/install/
https://docs.docker.com/engine/install/linux-postinstall/
https://download.delphix.com/folder

Data Control Tower - Data Control Tower Home

Running docker ps should show 9 containers up and running:

sudo docker ps

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES

75a9df0caed7 delphix-dct-proxy:6.0.0 "/sbin/tini -- /boot.." 7 seconds
ago Up 4 seconds 0.0.0.0:443->8443/tcp delphix-dct-proxy:3.0.0

a23f4fbe0220 delphix-dct-app:6.0.0 "java -jar /opt/delp.." 7 seconds
ago Up 5 seconds delphix-dct-app:6.0.0

96ba8018fan3 delphix-dct-data-library:6.0.0 "/usr/bin/tini -- ./.." 7 seconds
ago Up 5 seconds delphix-dct-data-library:6.0.0
8e5ble671lacc delphix-dct-jobs:6.0.0 "/usr/bin/tini -- ./.." 7 seconds
ago Up 5 seconds delphix-dct-jobs:6.0.0

96049058025 delphix-dct-data-bookmarks:6.0.0 "/usr/bin/tini -- ./.." 7 seconds
ago Up 5 seconds delphix-dct-data-bookmarks:6.0.0
20d1782cb3bb delphix-dct-ui:6.0.0 "node ./index.js" 7 seconds
ago Up 5 seconds delphix-dct-ui:6.0.0

4faed43c79e8d delphix-dct-virtualization:6.0.0 "/usr/bin/tini -- ./.." 7 seconds
ago Up 5 seconds delphix-dct-virtualization:6.0.0
83d7d661d8a0 delphix-dct-graphql:6.0.0 "/bin/sh -c '"BASE_UR.." 7 seconds
ago Up 6 seconds delphix-dct-graphql:6.0.0

3dded474e28b delphix-dct-postgres:6.0.0 "docker-entrypoint.s.." 7 seconds
ago Up 6 seconds 5432 /tcp delphix-dct-postgres:6.0.0

4.1.2 Bootstrapping API Keys

& Docker Compose should only be used to deploy DCT in an evaluation/testing capacity.

There is a special process to bootstrap the creation of the first API key. This first API key should only be used to
create another key and then promptly deleted, since the bootstrap APl will appear in the logs. This process can be
repeated as many times as needed, for example, in a case where existing API keys are lost or have been deleted. It
also means that the Linux users with permissions to edit the docker-compose file implicitly have the ability to get
an APl key at any time. There is no mechanism to lock this down after the first bootstrap key is created.

Begin by stopping the application with the following command:

sudo docker-compose stop

Once the application is stopped, edit the docker-compose.yaml file and modify the following lines to the DCT
section, to setthe API_KEY_CREATE to the string value "true":

services:
gateway:
environment:
API_KEY_CREATE: "true"

Deployment - 17

Data Control Tower - Data Control Tower Home

Start DCT again with sudo docker-compose up .You will see the following output in the logs for the app
container (the key will be different from this example):

NEWLY GENERATED API KEY: 1.0p9PMkZO4HgyOezwjhXOFi41EKrD4pflejgqjdopfKtywlSWRIGOFIaWaj
uKcBT3

Copy the API Key and shut down the DCT app. The API key can now be used to authenticate with DCT. Remember
that the API Key value must be prefixed with apk. An example cURL command with the above API Key appears as
follows:

curl —--header 'Authorization: apk
1.0p9PMkZ04Hgy0ezwjhXOFi41EKrD4pflejgqjdOpfKtywlSWROGOfIaWajuKcBT3"

Edit the docker-compose.yaml file to set the API_KEY_CREATE environment variable value back to "false" and

restart DCT again with sudo docker-compose up -d.

4.1.3 Custom configuration

Docker Compose should only be used to deploy DCT in an evaluation/testing capacity.

4.1.3.1 Introduction

DCT was designed for users to configure Delphix applications in a way that would meet their security requirements,
which handled with a custom configuration. This article provides background information on performing custom
configurations, which are referenced throughout DCT articles and sections.

4.1.3.2 Bind mounts

Configuration of DCT is achieved through a combination of API calls and the use of Docker bind mounts’. A bind
mount is a directory or file on the host machine that will be mounted inside the container. Changes made to the
files on the host machine will be reflected inside the container. It does not matter where the files live on the host
machine, but the files must be mounted to specific locations inside the container so that the application can find
them.
The DCT and proxy containers can both be configured via separate bind mounted directories. Each container
requires all configuration files to be mounted to the /etc/config directoryinside the container. Therefore, it is
recommended to create a directory for each container on the host machine to store all of the configuration files and
mountthemto /etc/config.Thisisdone by editingthe docker-compose.yaml . Under proxy services,
add a volumes section if one does not already exist; this is used to mount the configuration directory on the host to
/etc/config.Forexample,if /my/proxy/config isthe directory on the host that contains the
configuration files, then the relevant part of the compose file would look like this:

7 https://docs.docker.com/storage/bind-mounts/

Deployment - 18

https://docs.docker.com/storage/bind-mounts/
https://docs.docker.com/storage/bind-mounts/

Data Control Tower - Data Control Tower Home

services:
proxy:
volumes:
- /my/proxy/config:/etc/config

To change the configuration of the DCT container, make a similar change under its service section, the only
difference being the directory on the host. After making this change, the application will need to be stopped and
restarted.

The structure of /my/proxy/config will need to match the required layoutin /etc/config.When each
container starts, it will create default versions of each file and place them in the expected location. It is highly
recommended to start from the default version of these files. For example, if /my/proxy/config isthe bind

mount directory on the host, it could be populated with all the default configuration files by running the following
commands.

First, create an nginx directoryinside /my/proxy/config on the host.

cd /my/proxy/config
mkdir nginx

Find the id of the proxy container with docker ps. Look for the container with a delphix-dct-proxy image name. To
determine the user and group ownership for any configuration files, start the containers and open a shell to the
relevant one (nginx in this example), then examine the current user/group IDs associated with the files.

$ docker ps

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES

ac343412492a delphix-dct-proxy:3.0.0 "/bootstrap.sh" 8 minutes ago Up
8 minutes 0.0.0.0:443->443/tcp, :::443->443/tcp dct-packaged_proxy_1

In the above example, ac343412492a is the id. Run the following command to copy the default files to the bind
mount.

docker cp <container id>:/etc/config/nginx /my/proxy/config/nginx

One can always go back to the original configuration by removing the bind-mount and restarting the container or
using docker cp as in the previous example to overwrite the custom files with the default versions.

4.1.4 (3.0.0)Connecting a Delphix Engine

4.1.4.1 Introduction

After DCT authentication is complete, the HTTPS should be securely configured on DCT and able to be
authenticated against. The next step is to register an engine with DCT so that it can fetch results. DCT connects to
all engines over HTTPS, thus some configurations might be required to ensure it can communicate successfully.

Deployment - 19

Data Control Tower - Data Control Tower Home

4.1.4.2 Truststore for HTTPS

If the CA certificate that signed the engine's HTTPS certificate is not a trusted root CA certificate present in the JDK,
then a custom truststore containing the needed CA certificates can be provided to DCT. If this truststore is not
provided, a secure HTTPS connection cannot be established and registering the engine will fail.

The insecure_ssl engine registration parameter can be used to bypass the check, however, this should not be used
unless the risks are understood.

Providing the custom truststore to DCT is a three step process. First, the truststore needs to be created and
populated with the relevant CA certificates. We support Java Keystore (JKS) file formats, PKCS#12 is the default
Keystore format for Java 9 and above. It then needs to be placed on the host and bind mounted to a specific
location inside the container. Finally, the truststore_filename and truststore_password must be specified when
registering an engine.

Place the truststore on host machine

This will be done using a bind mount. The truststore file needs to be at /etc/config/certs inside the container and
therefore should be placed inside the certs subdirectory in the configuration directory on the host machine.

Set parameters when registering engine

The relevant engine registration parameters are the truststore_filename and truststore_password. The
truststore_filename is the name of the PKCS#12 file that contains the CA certificates needed to validate the engine's
HTTPS certificate chain. Note that the certs.p12 file needs to be inside the certs subdirectory in the bind mount.

curl --location --request POST 'https://<hostname>/v2/management/engines' \
-—header 'Content-Type: application/json' \

-—header 'Accept: application/json' \

--header 'Authorization: apk <your API key>' \

--data-raw '{

"name": "My Engine'",

"hostname": "engine.delphix.com",
"username": "admin'",

"password": '"<engine password>",
"truststore_filename": "certs.pl2",
"truststore_password": "notPassword"

} 1

4.1.4.3 Authentication with the engine

All authentication with the Delphix engine is done with the username and password of a domain admin engine user.
There are two methods of storing these credentials with DCT. They can either be stored and encrypted on DCT itself
or retrieved from a password vault. We recommend fetching the credentials from a vault. Currently only the
HashiCorp vault is supported.

HashiCorp vault

There are two high-level steps to configuring a HashiCorp vault. The first is to set up authentication with the vault
and register the vault. The second is to tell DCT how to get the specific engine credentials needed from that
registered vault. A single vault can be used for multiple different Delphix engines.

Deployment - 20

Data Control Tower - Data Control Tower Home

Vault Authentication and Registration

First, DCT needs to be able to authenticate with the vault. DCT supports the Token8, AppRole®, and TLS
Certificates'? auth methods. This is done by passing a command to the HashiCorp CLI'. It is recommended to first
ensure that successful authentication is done and one can retrieve the credentials with the HashiCorp CLI directly
to ensure the correct commands are passed to DCT.

Adding a vault to DCT is done through API calls to the /v2/management/vaults/hashicorp endpoint. All
authentication methods requires the location of the vault is provided through the env_variables property in the
POST body like so:

"env_variables": {
"VAULT_ADDR": "https://10.119.132.40:8200"

}

Token
To use the token authentication method, this needs to be included as part of the env_variables field. The full
example to register the vault would appear as:

curl —--location —--request POST 'https://<hostname>/v2/management/vaults/hashicorp' \
-—header 'Content-Type: application/json' \
-—header 'Accept: application/json' \
--header 'Authorization: apk <your API key>' \
--data-raw '{
"env_variables": {
"VAULT_TOKEN": "<your token>"
"VAULT_ADDR": "https://10.119.132.40:8200"

} '

A response should be received similar to the lines below:

{
"qd": 2,
"env_variables": {
"VAULT_TOKEN": "<your token>"
"VAULT_ADDR": "https://10.119.132.40:8200"
}
}

Note the id of the vault, this will be needed in the next step to register the engine.

AppRole

8 https://www.vaultproject.io/docs/auth/token

9 https://www.vaultproject.io/docs/auth/approle
10 https://www.vaultproject.io/docs/auth/cert

11 https://www.vaultproject.io/docs/commands

Deployment - 21

https://www.vaultproject.io/docs/auth/token
https://www.vaultproject.io/docs/auth/approle
https://www.vaultproject.io/docs/auth/cert
https://www.vaultproject.io/docs/commands
https://www.vaultproject.io/docs/auth/token
https://www.vaultproject.io/docs/auth/approle
https://www.vaultproject.io/docs/auth/cert
https://www.vaultproject.io/docs/commands

Data Control Tower - Data Control Tower Home

To use the AppRole authentication method, this needs to be included as part the login_command_args field, as
shown below.

"login_command_args":
["write", "auth/approle/login", "role_id=1", "secret_id=123"]

The full example to register the vault would appear as:

curl --location --request POST 'https://<hostname>/v2/management/vaults/hashicorp' \
--header 'Content-Type: application/json' \
--header 'Accept: application/json' \
--header 'Authorization: apk <your API key>' \
--data-raw '{
"env_variables": {
"VAULT_ADDR": "https://10.119.132.40:8200"
b
"login_command_args":
["write", "auth/approle/login", "role_id=1", "secret_id=123"]
}l

A response should be received similar to the lines below:

{
"qd": 2,
"env_variables": {
"VAULT_TOKEN": "<your token>"
"VAULT_ADDR": "https://10.119.132.40:8200"
}
}
TLS Certificates

The configuration of mutual TLS authentication requires an additional step. The private key and corresponding
certificate must be placed inside the /etc/config bind mount*2.

["login", "-method=cert", "-client-cert=/etc/config/cert.pem", "-client-key=/etc/
config/key.pem"]

Retrieving engine credentials

Once DCT can authenticate with the vault, it needs to know how to fetch the relevant engine credentials. When
registering an engine, the user will need to provide the HashiCorp CLI commands through the
hashicorp_vault_username_command_args and hashicorp_vault_password_command_args parameters.

The relevant part of the engine registration payload will look like the following:

12 https://portal.document360.io/dct-3-0-0/docs/custom-configuration

Deployment - 22

https://portal.document360.io/dct-3-0-0/docs/custom-configuration
https://portal.document360.io/dct-3-0-0/docs/custom-configuration

Data Control Tower - Data Control Tower Home

"{

"hashicorp_vault_id": 1

"hashicorp_vault_username_command_args": ["kv", "get", "-field=username", "kv-
v2/delphix-engine-secrets/engineUser"]
b

"hashicorp_vault_password_command_args": ["kv", "get", "-field=password", '"kv-
v2/delphix-engine-secrets/engineUser"]

} 1

The hashicorp_vault_id will be the ID that was returned as part of the previous step. Note that the exact paths to
fetch the username and password will vary depending on the exact configuration of the vault.

4.1.5 DCT logs

Docker Compose should only be used to deploy DCT in an evaluation/testing capacity.

DCT leverages the Docker logging®? infrastructure. All containers log to stdout and stderr so that their logs are
processed by Docker. Docker supports logging drivers for a variety of tools such as Fluentd, Amazon CloudWatch,
and Splunk to name a few. See Docker documentation here'# on how to configure them. These changes will need to
be made to the docker-compose.yaml file. This link'® explains how to alter the compose file to adjust the logging
driver. For example, if you want to use syslog for the proxy container then it would look like this:

services:
proxy:
logging:
driver: syslog
options:

syslog-address: "tcp://192.123.1.23:123"

4.1.5.1 Admin Topics

Backup DCT

This article discusses how to backup DCT. The data that needs to be backed up is the Docker volumes used by the
DCT container, gwdatabase container, and the configuration directories on the host that are bind mounted to the
containers.

The Docker volumes named {xxx}delphix-dct-data and {xxx}delphix-dct-database-data should be backed up to
prevent data loss. This Docker article'® explains how to backup a data volume.

The bind mount directories containing the configuration files are standard directories that can be backed up as
desired. A simple approach would be to create a tar file of the contents. If /my/config is the bind mount directory on
the host, then this can be done with the following command:

13 https://docs.docker.com/config/containers/logging/

14 https://docs.docker.com/config/containers/logging/configure/

15 https://docs.docker.com/compose/compose-file/compose-file-v3/#logging

16 https://docs.docker.com/storage/volumes/#backup-restore-or-migrate-data-volumes

Deployment - 23

https://docs.docker.com/config/containers/logging/
https://docs.docker.com/config/containers/logging/configure/
https://docs.docker.com/compose/compose-file/compose-file-v3/#logging
https://docs.docker.com/storage/volumes/#backup-restore-or-migrate-data-volumes
https://docs.docker.com/config/containers/logging/
https://docs.docker.com/config/containers/logging/configure/
https://docs.docker.com/compose/compose-file/compose-file-v3/#logging
https://docs.docker.com/storage/volumes/#backup-restore-or-migrate-data-volumes

Data Control Tower - Data Control Tower Home

tar -czf gateway-backup.tgz /my/config

Upgrade DCT

Introduction

This article describes the procedure to upgrade the DCT version without losing any data. Docker Compose uses the
concept of ‘project’ to create unique identifiers for all of a project’s containers and other resources (like volumes,
etc.).

Get the current project name and note it down using the following command:

+ The volume name would be of the format {project-name}_gateway-data and {project-name}
_gwdatabase-data. In the below example, the project name is delphix-dct.

docker volume 1s

DRIVER VOLUME NAME

local delphix-dct_gateway-data
local delphix-dct_gwdatabase-data

Bring down DCT services using the following command:

docker compose down
Refer to the Installation and Setup article to download and extract the new release tarball, then load Docker
images.

Navigate to the extracted directory which contains the docker-compose.yaml file. By default, Docker Compose
uses the extracted folder name as project-name. With that, either rename the extracted folder to match the
project-name and run:

docker compose up -d

OR run the below command with the project-name noted above from step #1 above

docker compose -p <project-name> up -d

(@ Additional Note
If the -p argument is used to deploy DCT services, then the corresponding command to bring down the
DCT services would be:

docker compose -p <project-name> down

Factory Reset DCT

This article explains how to factory reset DCT. Factory resetting means deleting all of the configuration and data
associated with DCT. Perform this step only if you are absolutely sure about this and understand the implications.

Deployment - 24

Data Control Tower - Data Control Tower Home

Bring all of the DCT services down with this command:

docker compose down

List all Docker volumes being used and note down the volume names:

docker volume 1s

DRIVER VOLUME NAME

local dct_gateway-data
local dct_gwdatabase-data

Delete the Docker volumes that are listed from the previous command:

docker volume rm dct_gateway-data
docker volume rm dct_gwdatabase-data

4.2 Kubernetes

4.2.1 Installation and setup for Kubernetes

4.2.1.1 Hardware requirements

The hardware requirements for Data Control Tower (DCT) on Kubernetes are listed below. In addition to these
requirements, inbound port 443 must be open for API clients, and outbound port 443 to engines. This is the
minimum total resource request for the Kubernetes deployment of Data Control Tower. Individual service-level
resource requests are contained in values.yaml file and can be overridden during deployment.

CPU: 4-Core
Memory: 2GB
Storage: 50GB
Port: 443

4.2.1.2 Installation requirements (Kubernetes)

DCT requires a running Kubernetes cluster to run, kubectl command line tool to interact with Kubernetes cluster
and HELM for deployment on to the cluster.

Requirement DCT Recommended Version Comments

Kubernetes Cluster 1.25 or above

Deployment - 25

Data Control Tower - Data Control Tower Home

Requirement DCT Recommended Version Comments

HELM 3.9.0 or above HELM installation should support HELM v3.
More information on HELM can be found at
https://helm.sh/docs/ . To install HELM, follow
the installation instructions at https://helm.sh/
docs/intro/install/ .

DCT also requires access to the HELM
repository from where DCT charts can be
downloaded. The HELM repository URL is
https://dlpx-helm-dct.s3.amazonaws.com®’.

kubectl 1.25.0 or above To install kubectl follow the instructions at
https://kubernetes.io/docs/tasks/tools/ .

If an intermediate HELM repository is to be used instead of the default Delphix HELM repository, then the
repository URL, username, and password to access this repository needs to be configured in the
values.yaml file under imageCredentials section.

4.2.1.3 Installing DCT

The latest version of the chart can be pulled locally with the following command:

curl -XGET https://dlpx—helm-dct.s3.amazonaws.com/delphix-dct-3.0.0.tgz -o delphix-
dct-3.0.0.tgz

This command will download a file with the name delphix-dct-3.0.0.tgz in the current working directory. The
downloaded file can be extracted using the following command:

tar -xvf delphix-dct-3.0.0.tgz

This will extract into the following directory structure:

delphix-dct
|- values.yaml
|- README .md
|- Chart.yaml
|- templates
|-<all templates files>

For pulling the Docker images from the registry, temporary credentials would need to be configured/overridden in

the values.yaml file. For getting the temporary credentials, visit the Delphix DCT Download!® page and login with
your customer login credentials. Once logged in, select the DCT Helm Repository link and accept the Terms and

17 https://dlpx-helm-dct.s3.amazonaws.com/
18 https://download.delphix.com/folder/1144/Delphix%20Product%20Releases/DCT

Deployment - 26

https://dlpx-helm-dct.s3.amazonaws.com/
https://download.delphix.com/folder/1144/Delphix%20Product%20Releases/DCT
https://helm.sh/docs/
https://helm.sh/docs/intro/install/
https://dlpx-helm-dct.s3.amazonaws.com/
https://kubernetes.io/docs/tasks/tools/
https://download.delphix.com/folder/1144/Delphix%20Product%20Releases/DCT

Data Control Tower - Data Control Tower Home

Conditions. Once accepted, login credentials will be presented. Note them down and edit the
imageCredentials.username and imageCredentials.password propertiesin the values.yamlfile
as shown below:

Credentials to fetch Docker images from Delphix internal repository
imageCredentials:

Username to login to docker registry
username: <username>

Password to login to docker registry
password: <password>

imageCredentials:
username: <username>
password: <password>

After extracting the chart, install it using the following command:

helm {dinstall dct-services delphix-dct

a delphix-dct is the name of the folder which was extracted in the previous step. In the above directory
structure, the values.yaml file contains all of the configurable properties with their default values. These
default values can be overridden while deploying DCT, as per the requirements. If the values.yaml file
needs to be overridden, create a copy of values.yaml and edit the required properties. While deploying
DCT, values.yaml file can be overridden using the following command:

helm dinstall dct-services -f <path to edited values.yaml> <directory

path of the extracted chart>

Once deployment is complete, check the status of the deployment using the following command:

helm 1list

NAME NAMESPACE REVISION UPDATED

STATUS CHART APP VERSION

dct-services default 1 2022-10-10 19:33:41.713202 +0530 IST
deployed delphix-dct-3.0.0 3.0.0

B HEWM will internally refer to the kubeconfig file to connect to the Kubernetes cluster. The default
kubeconfig file is present at location: ~/.kube/config

If the kubeconfig file needs to be overridden while running HELM commands, set the KUBECONFIG
environment variable to the location of the kubeconfig file.

Deployment - 27

Data Control Tower - Data Control Tower Home

Assuming an ingress controller configuration on the Kubernetes cluster is present, when accessing DCT
after the deployment, the ingress controller rule needs to be added for proxy service, along with port 443
(if SSL is enabled) and port 80 (if SSL is disabled).

4.2.2 DCT logs for Kubernetes

All DCT containers log to stdout and stderr so that their logs are processed by Kubernetes. To view container level
logs running on the Kubernetes cluster use:

kubectl logs <pod_name> -n dct-services

Log aggregators can be configured to read from stdout and stderr forall of the pods as per the
requirements.

4.2.3 Admin topics for Kubernetes

4.2.3.1 Deployment upgrade for Kubernetes
This article covers the upgrade process for DCT deployments on Kubernetes.

Create a new folder called dct-[version], where [version] is the latest version to which the platform is being
upgraded (i.e. if on 5.0.2, it would be 6.0.0).

smkdir dct-[version]

Download the new version of chart using the following command in tandem with the newly created folder.

$cd dct-[version]
Scurl -XGET https://dlpx-helm-dct.s3.amazonaws.com/delphix-dct-[version].tgz -o
delphix-dct-[version].tgz

a This command will download a file named delphix-dct-[version].tgz in the folder dct-[version].

The downloaded file is then extracted using the following command:

$tar -xvf delphix-dct-[version].tgz

Which will extract into the following directory structure:

delphix-dct
|- values.yaml

Deployment - 28

Data Control Tower - Data Control Tower Home

|- README .md
|- Chart.yaml
|- templates
|-<all templates files>

Copy the values.yaml file from the previous version parallel to the dct-[version] folder.
E This values.yaml file contains modified values from the existing previous version of deployment.

Since the Docker Registry (AWS ECR) expires after 12 hours, the Docker Registry should be modified in the
values.yaml (from the previous existing version) with the latest password. It can be obtained from https://
download.delphix.com!®, Here are some notes in regards to this step in the process:

« This password update in values.yaml is only required if the user using Delphix provided a Docker Registry
directly in the deployment (i.e. values.yaml).

+ Incase a user is using their internal Docker Registry, they should first pull the next version of the Docker
images from the Delphix provided registry, using a new password.

+ Steps to pull Docker images from the Docker Registry:

Docker login command (password from https://download.delphix.com?°)

$docker login --username AWS --password [PASSWORD] 762392488304 .dkr.ecr.us-west-2.ama
zonaws.com/delphix-dct

Pull Docker images of DCT Services:

$ docker pull

762392488304 .dkr.ecr.us-west-2.amazonaws.com/delphix-dct:nginx-[VERSION]

$ docker pull

762392488304 .dkr.ecr.us-west-2.amazonaws.com/delphix-dct:app-[VERSION]

$ docker pull

762392488304 .dkr.ecr.us-west-2.amazonaws.com/delphix-dct:data-bookmarks—-[VERSION]
$ docker pull

762392488304 .dkr.ecr.us-west-2.amazonaws.com/delphix-dct:delphix-data-library-
[VERSION]

$ docker pull

762392488304 .dkr.ecr.us-west-2.amazonaws.com/delphix-dct:graphql-[VERSION]

$ docker pull

762392488304 .dkr.ecr.us-west-2.amazonaws.com/delphix-dct:ui-[VERSION]

$ docker pull

762392488304 .dkr.ecr.us-west-2.amazonaws.com/delphix-dct:jobs-[VERSION]

$ docker pull

762392488304 .dkr.ecr.us-west-2.amazonaws.com/delphix-dct:postgres-[VERSION]

$ docker pull

762392488304 .dkr.ecr.us-west-2.amazonaws.com/delphix-dct:virtualization-[VERSION]

The last step is to run the helm upgrade command:

19 https://download.delphix.com/
20 https://download.delphix.com/

Deployment - 29

https://download.delphix.com/
https://download.delphix.com/
https://download.delphix.com/
https://download.delphix.com/

Data Control Tower - Data Control Tower Home

helm upgrade -f values.yaml dct-services delphix-dct

4.2.3.2 Factory reset DCT for Kubernetes

To clean DCT installation run following command:

helm delete dct-services

& This process will delete services pod and database both.

4.3 OpenShift

4.3.1 Installation and setup for OpenShift

4.3.1.1 Hardware requirements

The hardware requirements for Data Control Tower to deploy on OCP are listed below. In addition to these
requirements, inbound port 443 or 80 must be open for API clients. This is the minimum total resource requirement
for the deployment.

CPU: 4-Core
Memory: 16GB
Storage: 50GB
Port: 443

4.3.1.2 Installation requirements (OpenShift)

DCT requires a running OpensShift cluster to run, oc command line tool to interact with OpenShift cluster and HELM
for deployment on to the cluster.

Requirement DCT Recommended Version Comments
OpenShift Cluster 4.12 or above
HELM 3.9.0 or above HELM installation should support

HELM v3. More information on
HELM can be found at https://
helm.sh/docs/ . To install HELM,
follow the installation instructions
at https://helm.sh/docs/intro/
install/ .

DCT also requires access to the

Deployment - 30

https://helm.sh/docs/
https://helm.sh/docs/intro/install/

Data Control Tower - Data Control Tower Home

Requirement DCT Recommended Version Comments

HELM repository from where DCT
charts can be downloaded. The
HELM repository URL is https://
dlpx-helm-

dct.s3.amazonaws.com?1,

oc 4.11.3 or above To install oc follow the instructions
at https://docs.openshift.com/
container-platform/4.8/
cli_reference/openshift_cli/
getting-started-cli.html.

If an intermediate HELM repository is to be used instead of the default Delphix HELM repository, then the
repository URL, username, and password to access this repository needs to be configured in the
values.yaml file under imageCredentials section.

4.3.1.3 Installation process

Jumpbox setup

OC login
Run the OC login command to authenticate OpenShift CLI with the server.

oc login https://openshiftl.example.com --token=<<token>>

Verify KubeConfig
HELM will use the configuration file inside the SHOME/.kube/ folder to deploy artifacts on an OpenShift cluster.

Be sure the config file has the cluster context added, and the current-context is set to use this cluster. To verify the
context, run this command:

oc config current-context

Create a new project

Create a new project named dct-services using the command below:

21 https://dlpx-helm-dct.s3.amazonaws.com/

Deployment - 31

https://dlpx-helm-dct.s3.amazonaws.com/
https://dlpx-helm-dct.s3.amazonaws.com/
https://docs.openshift.com/container-platform/4.8/cli_reference/openshift_cli/getting-started-cli.html

Data Control Tower - Data Control Tower Home

oc new-project dct-services --description="DCT Deployment project" --display-name="dc
t-services"

Installing Helm
Install HELM using the following installation instructions mentioned at https://helm.sh/docs/intro/install/.

DCT also requires access to the HELM repository from where DCT charts can be downloaded. Run the following
commands to add the repository:

curl —-XGET https://dlpx—helm-dct.s3.amazonaws.com/delphix-dct-7.0.0.tgz -o delphix-
dct-7.0.0.tgztar -xvf delphix-dct-7.0.0.tgz

Deploy DCT chart

Find and update fsGroup values.yaml file

The fsGroup field is used to specify a supplementary group ID. All processes of the container, the owner of the
volume, and any files created on the volume are also part of this supplementary group ID.

For OpenShift deployment, this value need to be specified in the values.yaml file.

Find the allowed supplementary group range:

oc get project dct-services -o yaml

Aresponse should appear as follows:

apiVersion: project.openshift.io/vl
kind: Project
metadata:
annotations:
openshift.io/description: ""
openshift.io/display-name: ""
openshift.io/requester: cluster-admin
openshift.io/sa.scc.mcs: s0:c32,c4
openshift.io/sa.scc.supplemental-groups: 1001000000/10000
openshift.io/sa.scc.uid-range: 1001000000/10000
creationTimestamp: "2023-01-18T10:33:04Z"
labels:
kubernetes.io/metadata.name: dct-services
pod-security.kubernetes.io/audit: restricted
pod-security.kubernetes.io/audit-version: v1.24
pod-security.kubernetes.io/warn: restricted
pod-security.kubernetes.io/warn-version: v1.24
name: dct-services
resourceVersion: "99974"
uid: ccdd5c9f-2ce5-49b4-91a7-662e0598b63b

Deployment - 32

https://helm.sh/docs/intro/install/

Data Control Tower - Data Control Tower Home

spec:
finalizers:
- kubernetes
status:
phase: Active

Copy the first value from the openshift.io/sa.scc.supplemental-groups line, before the slash (e.g.
1001000000).

Paste this value in the values.yaml file:

Define SecurityContextConstraints for the pod
podSecurityContext:
fsGroup: 1001000000

Create values.yaml file

Create a values.yaml file and update the properties according to your environment. A sample values.yaml file can
be downloaded below.

values.yaml

(see page 30)

Deploy DCT
Run the following command to deploy the DCT chart:

helm install -f <path to edited values.yaml> dct-services apigw-repo/delphix-dct -
version=7.0.0

Verify deployment

All the images will be downloaded and then deployed. If some pods restarted at the startup, this is expected. After
some time, a total of 9 pods will be in running status and one job pod will be in completed status.

Deployment - 33

Data Control Tower - Data Control Tower Home

oc get pods -n dct-services

Find APl key

For the very first deployment bootstrap APl key will be printed in logs, please view gateway pod logs and find for
“NEWLY GENERATED API KEY”. the value is the API key.

oc logs <gateway-pod-name> -n dct-services

4.3.1.4 Configure Ingress
DCT only works with HTTPS Ingress, the Ul does not support HTTP.

Creating route
To create a route, you can use the OpenShift console and create a new one for the DCT service.

If SSL is terminated at this route, only then should the useSSL value in values.yaml be updated to false, so that 80
port will be exposed in proxy service and can be used to configure the route. The following screenshot shows the
route that forwards requests to 80 port of proxy service:

Deployment - 34

RedHat
OpenShift

o5 Administrator

Home

Operators

Workloads

Metworking

Services
Routes
Ingresses

NetworkPolicies

Storage

Builds

Observe

Compute

User Management

Administration

Project: apigw-services

Configure via: @ Form view YAML view

Name *

det

Hostname

detdelphix.com

Path

Service *

© proy

e to route t
© Add alternate Service
Target port *

B0 — B0A3 (TCP)

Security

Secure Route

i s be secured using several TLS termination types for serving cert

TLS termination *

Edge

Insecure traffic

Redirect

Data Control Tower - Data Control Tower Home

If SSL is not terminated at the Route level, then create a PassTrough route and use 443 port of the proxy service, and

configure the SSL certificate and key in the values.yaml file:

Deployment - 35

Data Control Tower - Data Control Tower Home

RedHat
OpenShift

¢ Administrator Project: apigw-services v

Home
Configure via: '® Form view YAML view
Operators
Name *
Workloads det
inigue name for the Route within the project
Networkin
9 Hostname
Services det.delphixcom
Routes d F et erated
Path
Ingresses
NetworkPolicies
hat the router watches to route traffic to the service
Service *
Storage
© proxy -
Builds Service to route to
© Add alternate Service
Observe
Target port *
443 —» B443 (TCP) -
Compute "
Target port for traffic
User Management Security

Secure Route
Administration

Routes can be secured using several TLS terminat
TLS termination *

Passthrough -

Insecure traffic
Redirect -

4.3.2 OpenShift authentication

4.3.2.1 Introduction

DCT uses Nginx/OpenResty as an HTTP server and a reverse proxy for the application. Using the default
configuration, all connections to DCT are over HTTPS and require the user to authenticate. There are three
supported methods for authentication; APl keys, Username/Password, and OpenID Connect.

4.3.2.2 Enable OAuth2 authentication

By default APIKey authentication will be enabled and when DCT starts it will generate a new API key(see page 43) in
logs if you want to enable openld connect authentication then follow below procedure:

Update the below properties in the values.yaml file and restart DCT:

Deployment - 36

Data Control Tower - Data Control Tower Home

flag to enable api_key based authentication

apiKeyEnabled: false

flag to enable OAuth2 based authentication

openIdEnabled: true

URL of the discovery endpoint as defined by the OpenId Connect Discovery
specification. This needs to be set if 'openIdEnabled' is set to true
openIdServerUrl: https://delphix.okta.com/oauth2/default/.well-known/oauth-
authorization-server

OAuth2 jwt claim name that should be used as client_id
jwtClaimForClientId: sub

OAuth2 jwt claim name that should be used as client_name
jwtClaimForClientName: sub

4.3.3 DCT logs for OpenShift

AlLDCT containers log to stdout and stderr, so that their logs are processed by OpenShift. To view container level
logs running on the OpenShift cluster, use this command:

oc logs <pod_name> -n dct-services

Log aggregators can be configured to read from stdout and stderr for all of the pods as per the requirements.

4.3.4 Admin topics for OpenShift

4.3.4.1 Deployment upgrade for OpenShift
This article covers the upgrade process for DCT deployments on Kubernetes.

Create a new folder called dct-[version], where [version] is the latest version to which the platform is being
upgraded (i.e. if on 5.0.2, it would be 6.0.0).

smkdir dct-[version]

Download the new version of chart using the following command in tandem with the newly created folder.

$cd dct-[version]
Scurl -XGET https://dlpx-helm-dct.s3.amazonaws.com/delphix-dct-[version].tgz -o
delphix-dct-[version].tgz

a This command will download a file named delphix-dct-[version].tgz in the folder dct-[version].

The downloaded file is then extracted using the following command:

Deployment - 37

Data Control Tower - Data Control Tower Home

$tar -xvf delphix-dct-[version].tgz

Which will extract into the following directory structure:

delphix-dct
|- values.yaml
|- README.md
|- Chart.yaml
|- templates
|-<all templates files>

Copy the values.yaml file from the previous version parallel to the dct-[version] folder.
a This values.yaml file contains modified values from the existing previous version of deployment.

Since the Docker Registry (AWS ECR) expires after 12 hours, the Docker Registry should be modified in the
values.yaml (from the previous existing version) with the latest password. It can be obtained from https://
download.delphix.com?2. Here are some notes in regards to this step in the process:

« This password update in values.yaml is only required if the user using Delphix provided a Docker Registry
directly in the deployment (i.e. values.yaml).

« Incase a user is using their internal Docker Registry, they should first pull the next version of the Docker
images from the Delphix provided registry, using a new password.

+ Steps to pull Docker images from the Docker Registry:

Docker login command (password from https://download.delphix.com?3)

$docker login --username AWS --password [PASSWORD] 762392488304.dkr.ecr.us-west-2.ama
zonaws.com/delphix-dct

Pull Docker images of DCT Services:

$ docker pull

762392488304 .dkr.ecr.us-west-2.amazonaws.com/delphix-dct:nginx-[VERSION]

$ docker pull

762392488304 .dkr.ecr.us-west-2.amazonaws.com/delphix-dct:app-[VERSION]

$ docker pull

762392488304 .dkr.ecr.us-west-2.amazonaws.com/delphix-dct:data-bookmarks-[VERSION]
$ docker pull

762392488304 .dkr.ecr.us-west-2.amazonaws.com/delphix-dct:delphix-data-library-
[VERSION]

$ docker pull

762392488304 .dkr.ecr.us-west-2.amazonaws.com/delphix-dct:graphql-[VERSION]

$ docker pull

762392488304 .dkr.ecr.us-west-2.amazonaws.com/delphix-dct:ui-[VERSION]

22 https://download.delphix.com/
23 https://download.delphix.com/

Deployment - 38

https://download.delphix.com/
https://download.delphix.com/
https://download.delphix.com/
https://download.delphix.com/

Data Control Tower - Data Control Tower Home

$ docker pull

762392488304 .dkr.ecr.us-west-2.amazonaws.com/delphix-dct:jobs-[VERSION]

$ docker pull

762392488304 .dkr.ecr.us-west-2.amazonaws.com/delphix-dct:postgres-[VERSION]

$ docker pull

762392488304 .dkr.ecr.us-west-2.amazonaws.com/delphix-dct:virtualization-[VERSION]

The last step is to run the helm upgrade command:

helm upgrade -f values.yaml dct-services delphix-dct

4.3.4.2 Factory reset DCT for OpenShift

To clean DCT installation run following command:

helm delete dct-services:

& This process will delete both services pod and database.

4.4 Engines: connecting/authenticating

4.4.1 Introduction

After DCT Authentication is complete, the HTTPS should be securely configured on DCT and able to be
authenticated against. The next step is to register an engine with DCT so that it can fetch results. DCT connects to
all engines over HTTPS, thus some configurations might be required to ensure it can communicate successfully.

4.4.2 Truststore for HTTPS

If the CA certificate that signed the engine's HTTPS certificate is not a trusted root CA certificate present in the JDK,
then custom CA certificates can be provided to DCT. If these certificates are not provided, a secure HTTPS
connection cannot be established and registering the engine will fail. The insecure_ssl engine registration
parameter can be used to bypass the check, however, this should not be used unless the risks are understood.

Get the public certificate of the CA that signed the engine’s HTTPS certificate in PEM format. IT team help may be
required to get the correct certificates. Base64 encode the certificate with:

cat mycertfile.pem | base64 -w 0

Copy the Base64 encoded value from the previous step and configure in values.yaml file under
truststoreCertificates section. e.g. section will look like this:

truststoreCertificates:

Deployment - 39

Data Control Tower - Data Control Tower Home

<certificate_name>.crt: <base64 encode certificate string value 1in single line>

<certificate_name> can be any logically valid string value for e.g. “engine”.

All the certificates configured in truststoreCertificates section will be read and included in the trustStore which
would be then used for SSL/TLS communication between DCT and Delphix Engine.

4.4.3 Authentication with engine

All authentication with the Delphix Engine is done with the username and password of a domain admin engine user.
There are two methods of storing these credentials with DCT. They can either be stored and encrypted on DCT itself
or retrieved from a password vault. We recommend fetching the credentials from a vault. Currently only the
HashiCorp vault is supported.

4.4.4 HashiCorp vault

There are two high-level steps to configuring a HashiCorp vault. The first is to set up authentication with the vault
and register the vault. The second is to tell DCT how to get the specific engine credentials needed from that
registered vault. A single vault can be used for multiple different Delphix Engines.

4.4.4.1 Vault authentication and registration

First, DCT needs to be able to authenticate with the vault. DCT supports the Token?*, AppRole?®, and TLS
Certificates?® authentication methods. This is done by passing a command to the HashiCorp CLI?". Itis
recommended to first ensure that successful authentication is done and one can retrieve the credentials with the
HashiCorp CLI directly to ensure the correct commands are passed to DCT.

Adding a vault to DCT is done through API calls to the /v2/management/vaults/hashicorp endpoint. All
authentication methods requires the location of the vault is provided through the env_variables property in the
POST body like so:

"env_variables": {
"VAULT_ADDR": "https://10.119.132.40:8200"
}

4442 Token

To use the token authentication method, this needs to be included as part of the env_variables field. The full
example to register the vault would appear as:

curl --location --request POST 'https://<hostname>/v2/management/vaults/hashicorp' \
--header 'Content-Type: application/json' \

--header 'Accept: application/json' \

--header 'Authorization: apk <your API key>' \

24 https://www.vaultproject.io/docs/auth/token
25 https://www.vaultproject.io/docs/auth/approle
26 https://www.vaultproject.io/docs/auth/cert

27 https://www.vaultproject.io/docs/commands

Deployment - 40

https://www.vaultproject.io/docs/auth/token
https://www.vaultproject.io/docs/auth/approle
https://www.vaultproject.io/docs/auth/cert
https://www.vaultproject.io/docs/commands
https://www.vaultproject.io/docs/auth/token
https://www.vaultproject.io/docs/auth/approle
https://www.vaultproject.io/docs/auth/cert
https://www.vaultproject.io/docs/commands

Data Control Tower - Data Control Tower Home

--data-raw '{
"env_variables": {
"VAULT_TOKEN": "<your token>"
"VAULT_ADDR": "https://10.119.132.40:8200"

}]

A response should be received similar to the lines below:

{
"id": 2,
"env_variables": {
"VAULT_TOKEN": "<your token>"
"VAULT_ADDR": "https://10.119.132.40:8200"
}
1

Note the id of the vault, this will be needed in the next step to register the engine.

4.4.43 AppRole

To use the AppRole authentication method, this needs to be included as part the login_command_args field, as
shown below.

"login_command_args":
["write", "auth/approle/login", "role_id=1", "secret_id=123"]

The full example to register the vault would appear as:

curl --location --request POST 'https://<hostname>/v2/management/vaults/hashicorp' \
--header 'Content-Type: application/json' \
--header 'Accept: application/json' \
--header 'Authorization: apk <your API key>' \
--data-raw '{
"env_variables": {
"VAULT_ADDR": "https://10.119.132.40:8200"
I
"login_command_args":
["write", "auth/approle/login", "role_id=1", "secret_id=123"]

} 1

A response should be received similar to the lines below:

{
"qd": 2,
"env_variables": {
"VAULT_TOKEN": "<your token>"

"VAULT_ADDR": "https://10.119.132.40:8200"

Deployment - 41

Data Control Tower - Data Control Tower Home

445 TLS certificates

The configuration of mutual TLS authentication requires an additional step. This feature currently is NOT supported
for Kubernetes deployment of DCT. This will be covered in later releases.

4.4.5.1 Retrieving engine credentials

Once DCT can authenticate with the vault, it needs to know how to fetch the relevant engine credentials. When
registering an engine, the user will need to provide the HashiCorp CLI commands through the

hashicorp_vault_username_command_args and hashicorp_vault_password_command_args
parameters.

The relevant part of the engine registration payload will look like the following:

'{

"hashicorp_vault_id": 1

"hashicorp_vault_username_command_args": ["kv", "get", "-field=username", '"kv-
v2/delphix-engine-secrets/engineUser"]
b

"hashicorp_vault_password_command_args": ["kv", "get", "-field=password", '"kv-
v2/delphix-engine-secrets/engineUser"]

}]

The hashicorp_vault_id will be the ID that was returned as part of the previous step. Note that the exact paths to
fetch the username and password will vary depending on the exact configuration of the vault.

4.5 Accounts: connecting/authenticating

There are 5 supported methods for authentication; APl keys, Username/Password, LDAP/Active Directory, SAML/
SSO0, and OpenlID Connect. These authentication methods are detailed on the corresponding pages in this section.

a DCT uses Nginx/OpenResty?® as an HTTP server and a reverse proxy for the application. Using the default
configuration, all connections to DCT are over HTTPS and require the user to authenticate. The Nginx/
OpenResty configuration files can be edited via /etc/config bind mounts, for the proxy container to
customize the HTTP server and change options (such as TLS versions).

28 https://openresty.org/en/

Deployment - 42

https://openresty.org/en/
https://openresty.org/en/

Data Control Tower - Data Control Tower Home

4.5.1 APl keys

4.5.1.1 APl keys

APl keys are the default method to authenticate with DCT. This is done by including the key in the HTTP
Authorization request header?® with type apk. A cURL example using an example key of
1.0p9PMkZ04Hgy0ezwjhX0OFi41lEKrD4pflejgqjdopfKtywlSWRIGOfIaWajuKcBT3 would appear as:

curl —--header 'Authorization: apk
1.0p9PMkZ04Hgy0ezwjhXOFi41EKrD4pflejgqjdOpfKtywlSWROGOfIaWajuKcBT3"

a cURL (like web browsers and other HTTP clients) will not connect to DCT over HTTPS unless a valid TLS
certificate has been configured for the Nginx server. If this configuration step(see page 59) has not been
performed yet and the risk is comprehended, you may disable the check in the HTTP client. For instance,
this can done with cURL using the --insecure flag. The cURL version must be 7.43 or higher.

Create and manage API Keys

The initial API key created should be used to create a new admin secure key. This is done by creating a new Account
entity and setting the generate_api_key. The "username" attribute should be the desired name to uniquely identify
the account.

curl —--location --request POST 'https://<hostname>/v2/management/accounts' \
--header 'Content-Type: application/json' \
-—header 'Accept: application/json' \
-—header 'Authorization: apk
1.0p9PMkZ04Hgy0ezwjhXOFi41EKrD4pflejgqjdOpfKtywlSWROGOfIaWajuKcBT3 "' \
--data-raw '{

"username'": "secure-key",

"generate_api_key": true

} !
a If the cURL version being used is below 7.43, replace the --data-raw option with --data.

A response should be received similar to the lines below:

{
"id": 2,
"token": "2.vCfCOMnpySYZLshuxap2aZ7xqBKANQvV7hFnobe7xuNTHSOAF2NQNVIOXXw4UyET6"
"username'":"secure-key"

}

29 https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Authorization

Deployment - 43

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Authorization
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Authorization

Data Control Tower - Data Control Tower Home

Now that the new and secure API key is created, the old one must be deleted for security reasons since the key
appeared in the logs. To do this make the following request:

curl --location --request DELETE 'https://<hostname>/v2/management/api-clients/<id>"'
\

--header 'Content-Type: application/json' \

--header 'Accept: application/json' \

-—header 'Authorization: apk

2.vCfCOMnpySYZLshuxap2aZ7xqBKANQvVThFnobe7xuNTHS9AF2NQNVIOXXw4UyET6'

The id referenced above is the numeric id of the Account. It is the integer before the period in the token. For
example, theid of 1.0p9PMkZ04HgyOezwjhXOFi41lEKrD4pflejgqjdopfKtywlSWROGOfIaWajuKcBT3
is 1.

Finally, to list all of the current Accounts, make the following request:

curl --location --request GET 'https://<hostname>/v2/management/accounts/"' \
--header 'Content-Type: application/json' \

-—header 'Accept: application/json' \

-—-header 'Authorization: apk <your API key>'

4.5.2 Username/password

When creating an account, a username and password combination can be associated with the account (whether an
API Key was generated for the account or not). To do so, specify the “username” and “password” properties in the
API request, for example:

curl -k --location --request POST 'https://<hostname>/v2/management/accounts' \
--header 'Content-Type: application/json' \
--header 'Accept: application/json' \
-—header 'Authorization: apk
1.0p9PMkZ04Hgy0ezwjhXOFi41EKrD4pflejgqjdOpfKtywlSWRIOGOfIaWajuKcBT3" \
--data-raw '{
"username": '"some-username",
"password": "some-password",
"generate_api_key": false
"is_admin'": true

} 1

8 The is_admin property will create the account with admin privileges. Remove this property to create an
account without admin privileges.

The username and password combination can then be used to login via the Ul, or to fetch a temporary access token
valid for 24 hours. To do so, call the ‘login’ APl endpoint:

curl -k --location --request POST 'https://<hostname>/v2/login' \

Deployment - 44

Data Control Tower - Data Control Tower Home

--header 'Content-Type: application/json' \
--header 'Accept: application/json' \
--data-raw '{

"username": '"some-username",

"password": "some-password"

}]

A response should be received similar to the lines below:

"access_token":"eyJhbGci0iJIUzIINiJ9.eyJpc3MiOiJhcGlndylzZXJ2aWNlcylhcHAiLCIzdWIH
0iI4IiwiZXhwIjoxNjYyNTUyMzI3LCIpYXQiOjE2NJIONjUSMjcsInVzZXJuYW1lIjoic29tZS11c2VybmFtZ
SJ9.Cx_hGU9noyWSemtKegjsA85FTgIRQgyJizR5t_akNps",

"token_type":"Bearer",

"expires_in":86400

}

The access token can be used as HTTP Authorization request header®® with type Bearer. A cURL example using the
access token retrieved above would appear as:

curl --header 'Authorization: Bearer
eyJhbGci0iITUZIINTJ9.eyIpc3MiOiJhcGlndylzZXI2aWNlcylhcHATLCIZdWIT0iI4TiwiZXhwIjoxNjYy
NTUyMzI3LCIpYXQiOjE2NFIONjU5MjcsInVzZXIuYWLlIjoic29tZS11c2VybmFtZSI9.Cx_hGU9noyWSemtK
6gjsA85FTgJRQgyJizR5t_akNps'

The password for an account can be updated with the change_password API endpoint, passing in both the old and
new passwords, such as in this example:

curl -k --location --request POST '<hostname>/v2/management/accounts/3/
change_password \

--header 'Content-Type: application/json' \

--header 'Accept: application/json' \

--header 'Authorization: Bearer
eyJhbGci0iJIUzIINGJ9.eyIpc3MiOiJhcGlndylzZXJ2aWNlcylhcHATLCIzdWIi0iI4IiwiZXhwIjoxNjYy
NTUyMzI3LCIpYXQi0jE2NFIONjU5SMIcsInVzZXJuYW1lIjoic29tZS11c2VybmFtZSJ9.Cx_hGUInoyWSemtK
6gjsA85FTgIRQgyJizR5t_akNps' \

--data-raw '{

"old_password": "some-password",
"new_password": "new-password"

}]

Following security best practices, the password is not stored on DCT and cannot be retrieved. If the password has
been lost, an account with admin privilege can reset the password for a particular account. It is recommended to
change the password reset by an admin account on the first login, or with the change_password API, as described
above.

30 https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Authorization

Deployment - 45

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Authorization
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Authorization

Data Control Tower - Data Control Tower Home

curl -k --location --request POST '<hostname>/v2/management/accounts/2/
password_reset' \

--header 'Content-Type: application/json' \

--header 'Accept: application/json' \

--header 'Authorization: Bearer
eyJhbGci0iJIUzI1IN{J9.eyIpc3MiOiJhcGlndylzZXJ2aWNlcylhcHATLCIZzdWIi0iI4IiwiZXhwIjoxNjYy
NTUyMzI3LCIpYXQi0jE2NJIONjU5MjcsInVzZXIuYW1lIjoic29tZS11c2VybmFtZSJI9.Cx_hGUInoyWSemtK
6gjsA85FTgJRQgyJizR5t_akNps' \

--data-raw '{

"new_password": "new-password"

} 1

In the above example, the admin is resetting the password of an account with id 2 to “new-password”.

4.5.2.1 Password policies

The password policy feature allows users to enable and customize the password policy enforced for local
username/password authentication (does not apply to LDAP/Active Directory or SAML/SSO based authentication).

4.5.2.2 Understanding password policies
The password policy is a set of requirements that local passwords must satisfy.

« min_length: A password must be longer than this length.

+ reuse_disallow_limit: The user should not reuse old passwords. This tells the number of last used
passwords disallowed to be reused as the new passwords.

« uppercase_letter: A password must have at least one capital letter.

+ lowercase_letter: A password must have at least one lower case letter.

« digit: A password must have at least one digit.

« special_character: A password must have at least one special character, such as #, $, !

« disallow_username_as_password: A password should not be the same as the user name.

« maximum_password_attempts: The number of allowed attempts for incorrect password, after which the
account gets locked.

4.5.2.3 Default password policy

By default, DCT does not enforce any password policy.

4.5.2.4 Changing the password policy

To change the current password policy, call the password policy APl endpoint, as shown in the example below:

curl --location --request PATCH 'https://<hostname>/v2/management/accounts/password-
policies' \
--header 'Content-Type: application/json' \
--header 'Accept: application/json' \
--header 'Authorization: apk <your API key>' \
--data-raw '{
"enabled": true,

Deployment - 46

Data Control Tower - Data Control Tower Home

"maximum_password_attempts": 2,
"min_length": 5,
"reuse_disallow_Llimit": 3,

"digit": true,

"uppercase_letter": true,
"lowercase_letter": true,
"special_character": true,
"disallow_username_as_password": true

}]

Changing the password policy does not affect existing passwords.

4.5.2.5 Disabling local username/password authentication

Username/password authentication (with passwords locally in DCT) can be disabled for individual accounts by not
setting or unsetting their password property, or across the DCT instance using the global properties API. Disable
username/password authentication to force authentication to use an alternate authentication method (LDAP/
Active Directory, SAML/SSO, etc.) as shown in this example:

curl --location --request PATCH 'https://<hostname>/v2/management/properties' \
--header 'Content-Type: application/json' \

--header 'Accept: application/json' \

--header 'Authorization: apk <your API key>' \

--data-raw '{"disable_username_password": true}'

4.5.3 LDAP/Active Directory

4.5.3.1 Configuration

LDAP/Active directory can be used to authenticate login requests, and optionally to retrieve additional information
about accounts, thereafter referred to as LDAP Search.

Configuring authentication

The following attributes must be set to configure LDAP/Active Directory authentication.

Property Name Description

enabled Whether the LDAP/Active Directory feature is enabled.

Deployment - 47

Property Name

auto_create_users

hostname

port

enable_ssl

insecure_ssl, unsafe_ssl_hostname_check,
trustore_file_name, truststore_password

[domains].msad_domain_name

31 mailto:;john@mycompany.co

Data Control Tower - Data Control Tower Home

Description

Whether DCT must automatically create account
records for successful authentication attempts using a
username which does not match any accounts.

If this is disabled, an administrator must create a DCT
account with an ldap_principal attribute matching the
value from the LDAP/Active Directory server prior to
the first login attempt.

If this is enabled, any user with valid credentials in the
LDAP/Active Directory server can authenticate to DCT,
by default with an empty authorization set (i.e not
being able to view any data or perform any action).

The host name or IP address of the LDAP/Active
Directory server.

Port of the LDAP/Active Directory server. This is
usually 389 for non SSL, and 636 for SSL.

Whether the connection to the LDAP/Active Directory
server must be performed over SSL. It is highly advised
to use SSL. Without SSL, communication between DCT
and the LDAP/Active server can be intercepted.

The SSL protocol requires the LDAP/Active Directory
server to expose a certificate signed by a Certificate
Authority (CA) trusted by the JDK which is running
DCT. Refer to the dedicated section below to see how
to configure an Active Directory/LDAP server of which
certificate is not recognized.

Microsoft Active Directory only: The DNS name of a
domain in the same forest as the accounts which
login. DCT will append the msad_domain_name to the
username provided at login to form a user principal
name (UPN).

Example: if the msad_domain_name is http://
mycompany.co and a user logs in with username john,
DCT will perform an LDAP request to the Active
Directory server to authenticate

john@mycompany.co3L.

Deployment - 48

mailto:john@mycompany.co
http://mycompany.co
mailto:john@mycompany.co

Data Control Tower - Data Control Tower Home

Property Name Description

[domains].username_pattern If the LDAP server is not Microsoft Active Directory, the
username_pattern is used to create a DN string for
user authentication. The pattern argument {0} is
replaced with the username at runtime.

Example: If the username_pattern is
uid={0},ou=People and a user logs in with username
john, DCT will perform an LDAP request with DN
uid=john,ou=People.

The LDAP/Active Directory Integration can be configured both via DCT Ul and API. The below image shows an

example of how the configuration can be set in the Ul as a way to Authenticate users, auto create new users, as well
as map group attributes for authorization within the DCT Access Control system.

Deployment - 49

Data Control Tower - Data Control Tower Home

Edit LDAP Settings

Enabled

Auto-create Users
Hostnama

activedirectory.acme.com

Port

636

Domains

MEAD Domain Mama

acme.com

Username Pattern
Search Base
CN=Users,DC=acme,DC=com

Group Attribute

department

Email Attribute

mail

First Narne Attribute

givenName

Last Name Attribute

sn

Object Class Aftribute

person

Search Aftribute

sAMAccountName

The following example requests enable LDAP authentication over SSL with an Active Directory server at address

activedirectory.company.co

32

using the us.company.co>® domain:

32 http://activedirectory.company.co

33 http://us.company.co

Deployment - 50

http://activedirectory.company.co
http://us.company.co
http://activedirectory.company.co
http://us.company.co

Data Control Tower - Data Control Tower Home

curl --location --request PUT 'https://<hostname>/v2/management/ldap-config' \
--header 'Content-Type: application/json' \

--header 'Accept: application/json' \

--header 'Authorization: apk <your API key>' \

--data-raw '{

"enabled": true,

"auto_create_users": true,

"hostname": "activedirectory.company.co",
"enable_ss1": true,
"port": 636,

"domains": [{
"msad_domain_name":"us.company.co"
} 1

Validating the configuration

Updating the LDAP/Active Directory configuration does not guarantee that the provided values are correct, as
validating those requires a user to authenticate to DCT. This can be achieved with the ldap-config/validate API
endpoints, using the credentials valid for the LDAP/Active Directory server. When provided with a username/
password combination, the ldap-config/validate APl endpoint will authenticate with the LDAP server. If the
response status code is 200, the configuration is correct. Otherwise, the response code will be 400, and the
response body will provide information to resolve the configuration problems. For example:

curl --location --request POST 'https://<hostname>/v2/management/ldap-config/
validate' \

-—header 'Content-Type: application/json' \

-—header 'Accept: application/json' \

-—header 'Authorization: apk <your API key>' \

--data-raw '{

"username'": "<ldap-username>",

"password": "<ldap-password>"

} 1

a Because of a defect in version 3.0.0 of DCT, the above request might fail with a response similar to:

search failed for john.doe with search base null' ,search attribute
"null'

This indicates that authentication works, and search (see below) is not configured.

Login

One the configuration has been updated, accounts can login (via the Ul or API) using the same Ul form/API endpoint
they would be using for the local username/password authentication feature. For example:

curl -k --location --request POST 'https://<hostname>/v2/login' \
--header 'Content-Type: application/json' \

Deployment - 51

Data Control Tower - Data Control Tower Home

--header 'Accept: application/json' \
--data-raw '{

"username'": "<ldap-username>",
"password": "<ldap-password>"

}]

When LDAP/Active directory is enabled, DCT first attempts to validate passwords with the LDAP/Active Directory
server, and falls back to local password authentication in case of failure. Enabling LDAP/Active directory is thus a
non disruptive operation for existing accounts.

In order to force a transition to LDAP/Active Directory only password authentication, the DCT administrator must
either update the account records to remove the password, or disable local password authentication entirely.

4.5.4 SAML/SSO

The SAML 2.0 protocol allows DCT to delegate authentication to a SAML 2.0 compatible Identity Provider (Active
directory federation services, Azure active directory, Ping federate, Okta, OnelLogin, etc.). It only applies to web
browser based interaction, and cannot be used for APl access (scripting, integration).

Setting up SAML/SSO requires configuration changes both in the Identity Provider and DCT, so that trust can be
established across both products.

When using SAML/SSO, DCT will uniquely identify accounts by email address, so make sure that records at the
identity provider are configured with a unique email address.

DCT supports automatic account creation (or just in time account provisioning) when using SAML/SSO. When
automatic account creation is enabled, accounts are created automatically when users login for the first time.

DCT allows group membership to be retrieved from the Identity Provider, which can be used to control access
control authorization within DCT via DCT Access Groups. Using Identity Provider group membership allows DCT
authorization to be managed per account group, and guarantees that authorizations in DCT reflect the organization
structure which is expressed by group membership of the identity provider.

SAML/SSO is not mutually exclusive with other authentication methods, so enabling SAML/SSO is not disruptive
(accounts configured with local password or LDAP/Active Directory authentication can still authenticate). In order
to switch to SAML/SSO exclusively as authentication method for web browser interaction, perform the SAML/SSO
configuration steps below and disable LDAP/Active Directory and Username/Password authentication. Note that
API Key based authentication cannot be entirely disabled, but only administrators can create accounts with API
keys.

4.5.4.1 |dentity provider setup

Require that an administrator of the Identity provider used by your organization sets up a SAML 2.0 integration with
DCT (an integration is sometimes called a Relying party trust, or an application).

The exact instructions are product specific, but the following input values must be provided:

Name + Alternative name depending Value
on product

Deployment - 52

Data Control Tower - Data Control Tower Home

Single Sign-on URL « SAML Assertion Consumer https://<dct-hostname>/v2/saml/
Service SSO
« ACS

+ Recipient URL
+ Destination URL
+ Relying party SAML 2.0 SSO

+ Service URL
+ Reply URL
Audience URI « SPEntity ID Any value can be selected, as long
« Relying Party trust identifier as the same value is set in the
Identify Provider configuration and
DCT configuration. We
recommend:
https://<dct-hostname>
Binding « POST
Protocol SAML 2.0 WebSSO protocol

The identity provider must be configured to include the email address as Nameld attribute, and DCT will use the
email attribute as a unique identifier for users when connecting via SAML/SSO.

4.5.4.2 DCT SAML/SSO setup

Once the configuration has been performed at the Identity provider, use the saml-config APl endpoint to configure
DCT accordingly. If DCT has network access to the Identity Provider server, and the Identity Provider provides a
“metadata URL”, you can point DCT directly to the metadata URL. Otherwise, for instance when a firewall blocks
network access from DCT to the Identity Provider, copy the metadata from the Identity Provider using a web
browser and provide it directly to DCT.

The Identity provider (IDP) metadata is a standardized XML document providing the SAML Service Provider (DCT)
with the necessary information to verify the validity of incoming login requests and initiate a SAML/SSO login flow.

The metadata URL is sometimes called “App Federation Metadata URL”, and is sometimes only known by reading
the Identity Provider’s product documentation (for instance Active Directory Federation Services, or ADFS,
publishes the metadata URL at https://<hostname>/federationmetadata/2007-06/federationmetadata.xml).

If auto_create_users isenabled, DCT will create accounts automatically when they login with SAML/SSO for

the first time. If this is disabled, an administrator must create a DCT account with an email attribute matching the
value from the SAML/SSO Identity provider before they can login. When auto_create_users is enabled, any user
configured to authenticate via the Identity provider can authenticate to DCT, by default with an empty
authorization set (i.e not being able to view any data or perform any action).

Example 1: With network access, point DCT to the metadata URL.

curl --location --request GET 'https://<hostname>/v2/management/saml-config' \
-—header 'Content-Type: application/json' \

-—header 'Accept: application/json' \

--header 'Authorization: apk <your API key>' \

Deployment - 53

Data Control Tower - Data Control Tower Home

--data-raw '{
"enabled": true,
"auto_create_users": true,
"metadata_url": "<idp-metadata-url>",

}]

Example 2: Without network access, provide the IDP metadata directly.

curl --location --request PUT 'https://<hostname>/v2/management/saml-config' \
--header 'Content-Type: application/json' \
--header 'Accept: application/json' \
--header 'Authorization: apk <your API key>' \
--data-raw '{
"enabled": true,
"auto_create_users": true,

"metadata": "<json-escaped-idp-metata-xml-blob>",
} !
The IDP metadata must be JSON escaped. On a terminal with ./jg3* installed, this can be achieved with
the following command: jq --slurp --raw-input <<< 'xml-metadata-here'
4.5.4.3 Login

The SAML 2.0 protocol defines two login procedures: The Service Provider initiated flow starts by having users point
their web browserto https://<dct-hostname>/v2/saml/login to login, while the Identity provider
initiated flow starts at the Identity provider (details specific to Identity provider vendor). DCT supports both flows.
The SAML/SSO authentication method is not intended for APl interaction, and cannot be used with the Swagger Ul.

After successful authentication, the web browser is redirected to the Ul landing page and the the navigation bar can
be used to go to the desired page. The session expires 24 hours after login.

4.5.4.4 Troubleshooting
There was an issue in SAML authentication: The assertion cannot be used before <timestamp>

The above error message, which is accompanied by com.coveo.saml.SamlException: The assertion cannot be
used before <timestamp=> error in the application logs, indicates that DCT was not able to validate the timestamp of
the authentication provided by the Identity Provider. This is usually due to the system clock of the machine running
DCT being incorrectly configured. Consider using NTP to maintain the machine’s clock up to date.

There was an error fetching data

The above error message indicates that the current account does not have permission to view the data displayed on
the page. Remember that, while DCT creates accounts automatically upon login when auto_create_users is
enabled, by default accounts are created without any authorization and thus cannot see any data. Review the
section below to see how SAML/SSO group membership can be assigned automatically at account creation.

34 https://stedolan.github.io/jq/

Deployment - 54

https://stedolan.github.io/jq/
https://stedolan.github.io/jq/

Data Control Tower - Data Control Tower Home

4.6 Configure LDAP/Active Directory groups

In addition to being an authentication method, the LDAP/Active Directory integration can optionally also be used to
retrieve additional attributes about the accounts authenticating: first name, last name, email address and group
membership.

DCT only supports retrieving groups which are exposed as an attribute of the LDAP/Active Directory user record.
DCT can not fetch groups membership from group records at the LDAP/Active Directory, and thus also does not
support nested groups.

Group memberships are retrieved at authentication time, using the account credentials. DCT does not need
credentials of an LDAP/Active Directory administrator, but will only be able to retrieve group memberships if LDAP/
Active Directory users have the right to read the corresponding attribute.

This can be enabled by setting additional arguments to the domain APl object.
search_base The Context name in which to search. Being specific
enables faster LDAP search.

To construct the search_base DN string according to
your LDAP/Active Directory server, using an LDAP
browser, navigate to a user, and then construct the
search_base DN in reverse order from the User, up the
folder hierarchy. For example:

If a User DN is:
CN=some-user-id,CN=Users,DC=mycompany,DC=co
The corresponding search base might be:

CN=Users,DC=mycompany,DC=co

email_attr Name of the attribute in the LDAP/Active Directory
server containing email addresses.

Example: mail

last_name_attr Name of the attribute in the LDAP/Active Directory
server containing last names
Example: sn

first_name_attr Name of the attribute in the LDAP/Active Directory

server containing first names

Example: givenName

group_attr Name of the attribute in the LDAP/Active Directory
server containing group(s) membership. This can be a
multi-valued attribute.

Example: memberOf

Deployment - 55

search_attr

object_class_attr

Data Control Tower - Data Control Tower Home

Name of the attribute in the LDAP/Active Directory
server of which value corresponds to the username
provided to the DCT login requests.

For Active Directory, this is usually sSAMAccountName.

Example: If the search base is
CN=Users,DC=mycompany,DC=co and the
search_attr is principalName, DCT will search for a
record with a principalName matching the username
provided to the login request under the
CN=Users,DC=mycompany,DC=co sub tree.

Restricts search to records with an objectClass
matching this value.

Example: person

4.6.1 Active Directory example

The following requests enable LDAP authentication over SSL with an Active Directory server at address
activedirectory.company.co®, using the us.company.co>® domain, and configures optional attributes to retrieve

first name, last name, email address, and group membership from the users sub-tree.

curl --location --request PUT 'https://<hostname>/v2/management/ldap-config' \
--header 'Content-Type: application/json' \
--header 'Accept: application/json' \
--header 'Authorization: apk <your API key>' \
--data-raw '{

"enabled": true,

"auto_create_users": true,

"hostname": "activedirectory.mycompany.co",
"enable_ss1": true,
"port": 636,

"domains": [{

]
}l

"msad_domain_name":"mycompany.co",
"search_base":"CN=Users,DC=mycompany,DC=co",
"email_attr": "mail",

"first_name_attr": "givenName",
"last_name_attr": "sn",

"group_attr": "memberOf",
"object_class_attr":"person",

"search_attr": "sAMAccountName"

35 http://activedirectory.company.co
36 http://us.company.co

Deployment - 56

http://activedirectory.company.co
http://us.company.co
http://activedirectory.company.co
http://us.company.co

Data Control Tower - Data Control Tower Home

With the above config, when a user logs in with username John, DCT will:

1. Authenticate with the Active Directory server using the user principal name john@mycompany.co3” and
supplied password.

2. Search in the CN=Users,DC=mycompany,DC=co sub tree a record with objectClass=person and
sAMAccountName=john.

3. Create or update a DCT Account record with the attributes extracted from the Active Directory server.

4. Foreach group membership found in the memberOf of the Active Directory server, an account tag is

created with key=login_groups and value is the group name. These tags are protected (i.e cannot be
modified within DCT) and can be securely used to control access groups membership.

As explained above, the ldap-config/validate APl endpoint can be used to validate that each of the attributes
corresponding to LDAP/Active Directory attributes.

4.6.2 Attributes mapping

As explained above, the only required attribute in the SAML Response (the message sent by the Identity Provider to
DCT during login) is the Nameld attribute which must be configured to a unique email address.

In addition to this, DCT allows for first name, last name, and group membership attributes to be included. The first
and last names attributes will be stored as properties of the account object. For each group membership found in
the SAML response attribute, an account tag is created with key=login_groups and value is the group name. These
tags are protected (i.e cannot be modified within DCT) and can be securely used to control access groups
membership.

In other to enable these optional attributes, update the Identity provider configuration to include them in the SAML
response, and use the saml-config APl endpoint to configure DCT with the name of the attributes configured in the
Identity provider:

curl --location --request PUT 'https://<hostname>/v2/management/saml-config' \
--header 'Content-Type: application/json' \
--header 'Accept: application/json' \
--header 'Authorization: apk <your API key>' \
--data-raw '{
"enabled": true,
"auto_create_users": true,
"metadata": "<json-escaped-idp-metata-xml-blob>",
"first_name_attr": "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/
givenname",
"last_name_attr": "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/surname",
"group_attr": "http://schemas.xmlsoap.org/claims/Group"

} 1

With the above configuration, and a SAML Response as the following produced by the Identity Provider during login:

<?xml version="1.0" encoding="UTF-8"7?>

<saml2:Assertion ID="id97923983167603821157180516" IssuelInstant="2022-12-01T10:07:12.
856Z" Version="2.0"

xmlns:saml2="urn:oasis:names:tc:SAML:2.0:assertion">

37 mailto:john@mycompany.co

Deployment - 57

mailto:john@mycompany.co
mailto:john@mycompany.co

Data Control Tower - Data Control Tower Home

<saml2:Issuer Format="urn:oasis:names:tc:SAML:2.0:nameid-format:entity">http://
www. idp-demo.com/exklfupjwzlYcMo290h8</saml2:Issuer>
<saml2:Subject>
<saml2:NameID Format="urn:oasis:names:tc:SAML:1.1:nameid-format:unspecified">
john.doe@company.co</saml2:NameID>
<saml2:SubjectConfirmation Method="urn:oasis:names:tc:SAML:2.0:cm:bearer">
<saml2:SubjectConfirmationData NotOnOrAfter="2022-12-01T10:12:12.857Z2"
Recipient="https://localhost/v2/saml/SS0" />
</saml2:SubjectConfirmation>
</saml2:Subject>
<saml2:Conditions NotBefore='"2022-12-01T10:02:12.857Z" NotOnOrAfter="2022-12-01T1
0:12:12.857Z2">
<saml2:AudienceRestriction>
<saml2:Audience>https://dct-demo.delphix.com</saml2:Audience>
</saml2:AudienceRestriction>
</saml2:Conditions>
<saml2:AuthnStatement AuthnInstant="2022-12-01T10:05:07.916Z" SessionIndex="id166
9889232855.2084756273">
<saml2:AuthnContext>
<saml2:AuthnContextClassRef>urn:oasis:names:tc:SAML:2.0:ac:classes:Passwo
rdProtectedTransport</saml2:AuthnContextClassRef>
</saml2:AuthnContext>
</saml2:AuthnStatement>
<saml2:AttributeStatement>
<saml2:Attribute Name="http://schemas.xmlsoap.org/ws/2005/05/identity/claims/
givenname" NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:unspecified">
<saml2:AttributeValue
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" xsi:type="xs:st
ring">John
</saml2:AttributeValue>
</saml2:Attribute>
<saml2:Attribute Name="http://schemas.xmlsoap.org/ws/2005/05/identity/claims/
surname" NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:unspecified">
<saml2:AttributeValue
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" xsi:type="xs:st
ring">Doe
</saml2:AttributeValue>
</saml2:Attribute>
<saml2:Attribute Name="http://schemas.xmlsoap.org/claims/Group" NameFormat="u
rn:oasis:names:tc:SAML:2.0:attrname-format:unspecified">
<saml2:AttributeValue
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" xsi:type="xs:st
ring">Dev-Team
</saml2:AttributeValue>
<saml2:AttributeValue
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" xsi:type="xs:st
ring">QA
</saml2:AttributeValue>
</saml2:AttributeStatement>

Deployment - 58

Data Control Tower - Data Control Tower Home

</saml2:Assertion>

Would automatically create or update a DCT account with the following properties:

{
"id": 94,
"username": "john.doe@company.co",
"firstName": "John",
"lastName'": "Doe",
"email": "john.doe@company.co",
"tags": [
{
"key": "login_groups",
"value": "Dev-Team"
1,
{
"key": "login_groups",
"value": "QA"
}
]
}

4.7 Replace HTTPS certificate for DCT

By default, to enable HTTPS, DCT creates a unique self-signed certificate when starting up for the first time. This
certificate and private key are configured in the values.yaml file under:

proxy:
crt:<certificate_value>
key:<key_value>

To use your own certificates, these default values need to be replaced. They are Base64 encoded values of the
certificate and key, respectively.
+ To generate the Base64 encoded value of the certificate:
cat mycertfile.pem | base64 -w 0
+ To generate the Base64 encoded value of the key:
cat mykey.key | base64 -w 0

Generating a new TLS certificate and key could require the assistance of your Security or IT departments. A new key
pair (public and private key) will need to be created, in addition to a certificate signing request (CSR) for that key
pair. Your IT department should be able to determine the correct certificate authority (CA) to sign the CSR and
produce the new certificate. The common name of the certificate should match the fully qualified domain name
(FQDN) of the host, as well as the FQDN as a Subject Alternative Name (SAN).

Deployment - 59

Data Control Tower - Data Control Tower Home

5 DCT administration

5.1 Authentication

Authentication methods can be combined to accommodate the various types of workflows, whether they are web
based interaction for human beings, or automated interactions for third party software, scripting, etc. Please see
the individual pages in the Accounts: connecting/authenticating(see page 42) section under deployment for more
information.

API Keys: Each account can optionally be associated with an APl key. The API key is a long string of
characters which does not automatically expire. API keys are typically used for machine to machine
communication. API key authentication can not be disabled.

Username/Password: Each account can optionally be associated with a username/password combination.
DCT stores passwords a cryptographic hash of the password and salt using the Bcrypt algorithm in its
internal database. The password policies feature of DCT can be used to define the minimum requirements of
valid passwords (min length, special characters requirements, etc.) and temporarily block accounts after
failed login attempts. Username/Password authentication can be disabled across the DCT instance via the
global properties feature, for instance when the company policy is to prefer delegated authentication (LDAP/
Active Directory/SAML/SSO0).

LDAP/Active Directory: When using LDAP/Active Directory, API clients authentication with a username/
password combination, but DCT does not store the password locally in its internal database, and instead
connects over the LDAP protocol to validate passwords. More over, additional attributes such as first and
last name, email addresses and group membership can be read from the LDAP/Active directory system,
enabling access to DCT to be controlled via enterprise systems like directory services.

SAML/SSO: The SAML 2.0 protocol, implemented by DCT, allows web Ul sessions to authenticate via an
enterprise identify provider (Active directory federation services, Azure active directory, Ping federate, Okta,
Onelogin, etc.). When using the SAML/SSO authentication method, DCT does not store any credentials in its
internal database, but instead delegates authentication to the identify provider, via web browser
redirection. The SAML/SSO protocol is only intended for web browser based interaction.

OpenlD connect: OpenID connect (an extension of OAuth2.0) can be used for computer based systems
(scripts, integrations) to login to DCT, providing additional security over API keys.

5.2 Access groups

DCT Access Groups provides global user management and permissions for all objects within the connected
ecosystem. This entitlement authorization system is both managed and enforced for operations triggered through
DCT APIs and/or user interface.

This is mutually exclusive to the permissions system on local Continuous Data, Continuous Compliance,
and Self-Service applications. However, DCT’s system does enable users to operate on objects within
local engines, as DCT will perform those operations on the users behalf, if the user has the correct
permissions within DCT.

DCT administration - 60

Data Control Tower - Data Control Tower Home

DCT requests the
provisioning of a new VDB
from VDB “A” on User “A”’s

behalf.
ea (X)) Delphix

User A belongs to Access
Group “Alpha”, which has
provision permissions on

VDB “A”

Continuous
Data Engine

5.2.1 Access Group structure

Access Groups represent a singular, global set of users and permissions. It operates as the point to manage access
and authorization for all users; both human users accessing the DCT Ul, and automation by means of generating
API keys to leverage the DCT APIs.

Access Groups are comprised of two sets of configurable objects, accounts and roles.

Access Groups can have any number of accounts and roles (e.g. a role pairing DevOps permission sets for
a subset of VDBs, and a role pairing Compliance permission sets for a subset of Compliance Jobs).

Access Groups
Membership Attribution

Assigned Membership AD Group

AEEELILD < DCT Account Tag

(Users and API Keys)

Manually Allocated Accounts

Role Mode ~

Lindera tybe Standard Role
- £
subset of objects Custom Role
‘
L individual permission =,

5.2.2 Accounts

Accounts represent generalized users; a human user, an APl key, or both. An account can belong to multiple Access
Groups, but it is strongly recommended to maintain a dedicated Access Group for an account or group of accounts,
to prevent privilege creep. Accounts can be attributed to Access Groups via LDAP/Active Directory Group attributes,
DCT Account Tags, or manually adding accounts.

DCT administration - 61

Data Control Tower - Data Control Tower Home

5.2.3 Roles

Roles can be considered a collection of permissions. Attributing a role into an Access Group first starts by
identifying a “mode”. DCT currently supports both simple and scoped modes for roles, with the plan to introduce
advanced mode in a subsequent release.

Simple mode is meant to apply general sets of permissions as universal, for all applicable types of objects. For
example, a simple mode with a “Monitor” set of permissions will give viewing rights for all VDBs, dSources,
environments, etc.

Scoped mode is more closely related to the Continuous Data Engine model of applying a set of permissions on
specific groups of applicable objects. For example, scoped mode with a “DevOps” set of permissions grants view,
refresh, provision, etc. permissions over the defined set of VDBs. Scoped roles can be automated.

In addition to modes, roles can be configured with role types. The current release only includes “standard” roles,
which are comprised of:

5.2.3.1 Adminrole

DSOURCE/SNAPSHOT ,VDB/MANAGE_TAGS ,MASKING_JOB_SET/
SET_TAGS_AT_OBJECT_CREATION,BOOKMARK/SET_TAGS_AT_OBJECT_CREATION,VDB/

UPDATE ,MASKING_JOB_SET/REMOVE_JOB,LDAP/VALIDATE,DSOURCE/

UPDATE ,DSOURCE_CONSUMPTION_REPORT/READ,ENVIRONMENT/DISABLE,GLOBAL_PROPERTIES/
READ,VDB_GROUP/DELETE,GLOBAL_PROPERTIES/UPDATE,ACCOUNT/DELETE,DATABASE_TEMPLATE/
UPDATE,ENVIRONMENT /REFRESH,CDB/MANAGE_TAGS,VDB/CREATE,JOB/READ,DATABASE_TEMPLATE/
READ,REPORT_SCHEDULE/READ,VDB/PROVISION,DSOURCE/MANAGE_TAGS,VDB/

SNAPSHOT , STORAGE _SUMMARY _REPORT/READ,DSOURCE/PROVISION,SAML/UPDATE,VDB/

REFRESH, ACCOUNT/MANAGE_TAGS ,ACCOUNT/PASSWORD_RESET ,ENGINE/UPDATE,ACCOUNT/
READ,BOOKMARK/DELETE ,REPORT_SCHEDULE/CREATE,VDB_GROUP/MANAGE_TAGS ,PASSWORD_POLICY/
READ,VDB_GROUP/READ,VCDB/READ,MASKING_JOB/READ,CDB/READ,JOB/

ABANDON, CONNECTIVITY_CHECK/EXECUTE ,MASKING_JOB_SET/COPY,API_CLASSIFICATION/
UPDATE,ENGINE/CREATE_ENVIRONMENT ,ACCESS_GROUP/UPDATE,VDB/DELETE,VAULT/
DELETE,MASKING_JOB/DELETE,API_USAGE_REPORT/READ,MASKING_JOB_SET/UPDATE,DSOURCE/
READ,VDB_GROUP/CREATE, LDAP/UPDATE ,ACCOUNT/CREATE ,SMTP_CONFIG/VALIDATE,CONNECTOR/
UPDATE,VDB/READ,SMTP_CONFIG/READ,ENVIRONMENT/READ,ROLE/READ,SOURCE/
UPDATE,ENVIRONMENT /DELETE ,ENVIRONMENT /CREATE,VDB/START,VDB/DISABLE,VAULT/
READ,VDB_GROUP/REFRESH,BOOKMARK/READ ,DATABASE_TEMPLATE/IMPORT,DATABASE_TEMPLATE/
UNDO_IMPORT,ACCESS_GROUP/DELETE,VAULT/CREATE,VDB/ENABLE,ENGINE/
SET_TAGS_AT_OBJECT_CREATION,SOURCE/MANAGE_TAGS,BOOKMARK/UPDATE,VCDB/UPDATE,VDB/
SET_TAGS_AT_OBJECT_CREATION,DSOURCE_USAGE_REPORT/READ,SAML/READ,MASKING_JOB_SET/
MANAGE_TAGS, ENVIRONMENT /MANAGE _TAGS ,REPORT_SCHEDULE/DELETE,DSOURCE/
REFRESH,DATABASE_TEMPLATE/DELETE,VDB/STOP,ACCOUNT/UPDATE ,ENGINE/MANAGE_TAGS,BOOKMARK/
CREATE ,PASSWORD_POLICY/UPDATE ,MASKING_JOB_SET/DELETE,ACCESS_GROUP/READ,VDB_GROUP/
UPDATE,ENVIRONMENT /SET_TAGS_AT_OBJECT_CREATION,VDB/CREATE_VDBGROUP,DATABASE_TEMPLATE/
CREATE,VDB_GROUP/SET_TAGS_AT_OBJECT_CREATION,LDAP/READ,BOOKMARK/
REFRESH_FROM_BOOKMARK, REPORT_SCHEDULE /UPDATE ,BOOKMARK/
PROVISION_FROM_BOOKMARK,ENVIRONMENT/ENABLE,VDB/CREATE_BOOKMARK,VCDB/

MANAGE_TAGS ,MASKING_JOB/UPDATE ,BOOKMARK/MANAGE _TAGS,VDB_INVENTORY_REPORT/READ,ENGINE/
CREATE,CONNECTOR/EXECUTE ,ENVIRONMENT /UPDATE ,PRODUCT_INFO/READ,SMTP_CONFIG/

UPDATE ,ACCESS_GROUP/CREATE ,ACCOUNT/SET_TAGS_AT_OBJECT_CREATION,CONNECTOR/

DCT administration - 62

Data Control Tower - Data Control Tower Home

READ,API_CLASSIFICATION/READ,CDB/UPDATE,ENGINE/DELETE,MASKING_JOB_SET/READ,SOURCE/
READ,ENGINE/READ

5.2.3.2 Monitorrole

BOOKMARK/READ,SMTP_CONFIG/UPDATE,PRODUCT_INFO/READ,API_USAGE_REPORT/READ,JOB/
READ,REPORT_SCHEDULE/CREATE ,DSOURCE /READ,REPORT_SCHEDULE/READ,VDB_GROUP/
READ,SMTP_CONFIG/VALIDATE,VCDB/READ,DSOURCE_CONSUMPTION_REPORT/READ,SOURCE/
READ,DSOURCE_USAGE_REPORT/READ,CDB/READ,VDB/READ,REPORT_SCHEDULE /UPDATE ,ENVIRONMENT/
READ,SMTP_CONFIG/READ,ENGINE/READ,STORAGE_SUMMARY_REPORT/READ,REPORT_SCHEDULE/
DELETE,VDB_INVENTORY_REPORT/READ

5.2.3.3 DevOpsrole

ENVIRONMENT/DELETE, ENVIRONMENT /CREATE,VDB/MANAGE_TAGS,VDB/START ,BOOKMARK/
SET_TAGS_AT_OBJECT_CREATION,VDB/UPDATE,VDB/DISABLE,DSOURCE/UPDATE, ENVIRONMENT/
DISABLE,VDB_GROUP/DELETE,VDB_GROUP/REFRESH, BOOKMARK/READ ,DATABASE _TEMPLATE/

UPDATE , ENVIRONMENT /REFRESH, DATABASE_TEMPLATE/IMPORT,CDB/

MANAGE_TAGS , DATABASE_TEMPLATE/UNDO_IMPORT,VDB/CREATE,VDB/ENABLE , SOURCE/

MANAGE_TAGS , ENGINE/SET_TAGS_AT_OBJECT_CREATION, JOB/READ,BOOKMARK/

UPDATE ,DATABASE_TEMPLATE/READ,VCDB/UPDATE,VDB/SET_TAGS_AT_OBJECT_CREATION,VDB/
PROVISION,VDB/SNAPSHOT ,DSOURCE/MANAGE_TAGS, ENVIRONMENT /MANAGE _TAGS ,DSOURCE/
PROVISION,DSOURCE/REFRESH,DATABASE _TEMPLATE/DELETE,VDB/STOP,ENGINE/MANAGE_TAGS,VDB/
REFRESH, BOOKMARK/CREATE , VDB_GROUP/UPDATE , BOOKMARK /DELETE , VDB_GROUP/

MANAGE_TAGS , ENVIRONMENT /SET_TAGS_AT_OBJECT_CREATION,VDB/CREATE_VDBGROUP,VDB_GROUP/
READ,DATABASE_TEMPLATE/CREATE,VDB_GROUP/SET_TAGS_AT_OBJECT_CREATION,VCDB/READ,CDB/
READ, BOOKMARK /REFRESH_FROM_BOOKMARK , BOOKMARK/PROVISION_FROM_BOOKMARK , JOB/

ABANDON , ENVIRONMENT /ENABLE ,VCDB/MANAGE_TAGS ,VDB/CREATE_BOOKMARK , BOOKMARK /
MANAGE_TAGS,VDB/DELETE ,ENVIRONMENT /UPDATE , PRODUCT _INFO/READ,DSOURCE/READ,VDB_GROUP/
CREATE,CDB/UPDATE, SOURCE/READ,VDB/READ, ENVIRONMENT /READ , ENGINE /READ, SOURCE /UPDATE

5.2.3.4 Maskingrole

PRODUCT_INFO/READ,MASKING_JOB/DELETE,ENGINE/UPDATE ,MASKING_JOB_SET/DELETE,JOB/
READ,MASKING_JOB_SET/UPDATE,CONNECTOR/READ, ENGINE/DELETE,MASKING_JOB_SET/
REMOVE_JOB,MASKING_JOB_SET/READ,CONNECTOR/UPDATE ,MASKING_JOB/READ, JOB/

ABANDON , MASKING_JOB_SET/COPY,ENGINE/READ,MASKING_JOB/UPDATE,CONNECTOR/EXECUTE , ENGINE/
CREATE

DCT administration - 63

Data Control Tower - Data Control Tower Home

5.2.3.5 Ownerrole

ENVIRONMENT/DELETE,DSOURCE/SNAPSHOT,VDB/START ,MASKING_JOB_SET/
SET_TAGS_AT_OBJECT_CREATION,BOOKMARK/SET_TAGS_AT_OBJECT_CREATION,VDB/

UPDATE ,MASKING_JOB_SET/REMOVE_JOB,VDB/DISABLE,DSOURCE/UPDATE ,ENVIRONMENT/
DISABLE,VDB_GROUP/DELETE,VAULT/READ,VDB_GROUP/REFRESH, BOOKMARK/READ,ACCOUNT/
DELETE,DATABASE_TEMPLATE/UPDATE, ENVIRONMENT /REFRESH,DATABASE_TEMPLATE/

IMPORT ,DATABASE_TEMPLATE/UNDO_IMPORT,ACCESS_GROUP/DELETE,VDB/ENABLE,ENGINE/
SET_TAGS_AT_OBJECT_CREATION,BOOKMARK/UPDATE ,DATABASE_TEMPLATE/READ,VCDB/UPDATE,VDB/
SET_TAGS_AT_OBJECT_CREATION,REPORT_SCHEDULE/READ,VDB/PROVISION,VDB/

SNAPSHOT ,REPORT_SCHEDULE /DELETE ,DSOURCE /PROVISION,DSOURCE/REFRESH,DATABASE_TEMPLATE/
DELETE,VDB/STOP,ACCOUNT/UPDATE,VDB/REFRESH,ACCOUNT/PASSWORD_RESET,ENGINE/

UPDATE ,MASKING_JOB_SET/DELETE,ACCESS_GROUP/READ, VDB_GROUP/UPDATE ,ACCOUNT/

READ, BOOKMARK/DELETE , ENVIRONMENT /SET_TAGS_AT_OBJECT_CREATION,VDB/

CREATE_VDBGROUP, VDB_GROUP/READ, VDB_GROUP/SET_TAGS_AT_OBJECT_CREATION,VCDB/
READ,MASKING_JOB/READ,CDB/READ, BOOKMARK/REFRESH_FROM_BOOKMARK ,REPORT_SCHEDULE/
UPDATE , BOOKMARK/PROVISION_FROM_BOOKMARK , ENVIRONMENT/ENABLE,VDB/

CREATE_BOOKMARK , MASKING_JOB/UPDATE , ENGINE /CREATE_ENVIRONMENT ,CONNECTOR/
EXECUTE,ACCESS_GROUP/UPDATE,VDB/DELETE , ENVIRONMENT /UPDATE,VAULT/DELETE ,MASKING_JOB/
DELETE,ACCOUNT/SET_TAGS_AT_OBJECT_CREATION,MASKING_JOB_SET/UPDATE,DSOURCE/

READ, CONNECTOR/READ, CDB/UPDATE , ENGINE /DELETE ,MASKING_JOB_SET/READ,CONNECTOR/

UPDATE , SOURCE /READ, VDB/READ , ENVIRONMENT /READ, ENGINE /READ , SOURCE /UPDATE

a The subsequent DCT release will include the ability to create roles with custom sets of permissions.

5.2.4 Example configuration scenario

Access Groups can only be configured and updated via API as of DCT 4.0. Users will have the ability to
perform these configuration steps within the DCT Ul with the 5.0 release.

In this scenario, a DCT administrator will configure a new Access Group “App Team Alpha” who’s membership will
include Accounts with the AD Group attribute CN=Alpha, CN=Teams, DC=delphix, DC=com as well as the

manual addition of a unaffiliated user. This Access group will be “scoped” to have permissions from the DevOps
role over all VDB’s with the {Team: Alpha} tag.

5.2.4.1 Data assumptions
To create access group with above requirements, let first assume few values to understand the API call:

+ Access group name is App Team Alpha

+ DevOpsrole name= "devops"

« For AD users, one of the AD group attribute valueis CN=Alpha, CN=Teams , DC=delphix , DC=com
« Individual Account with account ID = 10

« VDBwithid= "1-VDB-DATASET-1"

DCT administration - 64

Data Control Tower - Data Control Tower Home

+ Scope by object tag: {Team: Alpha}

Option one

Create an access group with all required roles and permissions as mentioned above in a single API call.

APl: POST - https://<hostname>/v2/access-groups

Request Body:
{
"name": "Team Alpha",
"account_ids": [
10

1,

"account_tags": [

{
"key": "login_groups",
"value": "CN=Alpha, CN=Teams, DC=delphix, DC=com"
}
1,
"policies": [
{
"role_id": "devops",
"everything": false,
"object_tags": [
{
llkeyll: llTeamll,
"value": "Alpha"
}
1,
"objects": [
{
"object_id": "1-VDB-DATASET-1",
"object_type": "VDB"
}
]
}

Response: 201 - Created

Option two

Create the access group for above mentioned data/requirements by using different API calls as well. Do this using
multiple APIs.

1. Create Access Groups
APl: POST - https://<hostname>/v2/access-groups

Request Body:

DCT administration - 65

Data Control Tower - Data Control Tower Home

"name": "Team Alpha"

Response: 201 - Created

The Access Group id will appear in the response, as shown:

{
"id": "111111-2222-aaaa-bbbb-123456abcdef",
"name": "Team Alpha",
"single_account": false

}

2. Add account manually

APl: POST - https://<hostname>/v2/access-groups/111111-2222-aaaa-—
bbbb-123456abcdef/account-ids

Request Body:

{
"account_ids": [
10

]
}

Response: 200 - OK (Updated Access Group)

3. Add AD users automatically for the groups assumed above.

In order to add AD users automatically to this Access Group, we will need to create account tags matching with AD
groups as follows:

APl: POST - https://<hostname>/v2/access-groups/111111-2222-aaaa-
bbbb-123456abcdef/tags

Request Body:
{
"tags": [
{
"key'": "login_groups",
"value": "CN=Alpha, CN=Teams, DC=delphix, DC=com"
}
]
}

Response: 200 - OK (Updated Access Groups)

DCT administration - 66

Data Control Tower - Data Control Tower Home

4., Assign DevOps role to the Access Group.

For adding DevOps role, we will create a policy/scope for the access group as follows:

APl: POST - https://<hostname>/v2/access-groups/111111-2222-aaaa-
bbbb-123456abcdef/policies

Request Body:

"policies": [
{
"role_id": "devops",
"everything": false

}

Response: 200 - OK (Updated Access Groups)
5. Add tags to Scope/Policy of the Access Group.

Assume the created policyld/scopeld is 99999-2222-aaaa-bbbb-abced92dk3 .

APl: POST - https://<hostname>/v2/access-groups/111111-2222-aaaa-
bbbb-123456abcdef/policies/99999-2222-aaaa-bbbb-abced92dk3/object-tags

Request Body:
{
"tags": [
{
"key": "Team",
"value": "Alpha"
}
]
}

Response: 200 - OK

6. Add VDB manually.
To add VDB manually, use the below API:

APl: POST - https://<hostname>/v2/access-groups/111111-2222-aaaa-—
bbbb-123456abcdef/policies/99999-2222-aaaa-bbbb-abced92dk3/objects

Request Body:

"objects": [

{

DCT administration - 67

"object_id": "1-VDB-DATASET-1",
"object_type": "VDB"

Response: 200 - OK

5.2.5 Userinterface

5.2.5.1 Copy role scope

Data Control Tower - Data Control Tower Home

On the detail page of a role scope, an action is now available to copy it. The default name of the copied scape is
"Copy of [name of the original scope]", which can later be updated with the edit scope wizard. The list of scopes are
sorted by name, allowing for easy access in locating the created copy. To create a scope for a brand new role that is
not yet added to the Access Group, you must first add the role by editing the role tile on the left side of the scope

detail page.
o) g
< Access Groups

Accounts

admin >

1

devops >

Data

Roles

monitoring >

Compliance

Edit

~

admin Role Scope

N IMPLE
admin 2
devops Role Scope SIMPLE
devops
monitoring Role Scope

SIMPLE

monitoring

e

T Copy # Edit

(u] C@w # Edit

D Copy /' Edit

5.2.5.2 Delete role scope

On the detail page of a role scope, an action is now available to delete it. The delete button is unavailable if the role
scope is the only one of that role. If the scope should still be deleted and the button is unavailable, you must use the
edit role wizard to remove the role entirely, ultimately deleting the role scope.

DCT administration - 68

Data Control Tower - Data Control Tower Home

Remove Role Scope.

Are you sure you want to remove this Role Scope?

5.2.6 Advanced scope type
API Example:

curl --location --request POST '<hostname>/v3/access-groups/{access-group-id}/scopes/
{scopeld}/objects' \
--header 'Content-Type: application/json' \
--data-raw '{
"objects": [

{
"object_id": "1",
"object_type": "ACCOUNT",
"permission" : "READ"

}

}l

Add an always allowed object to Access Group scope
Always allowed objects can be defined as objects that are always allowed for an access group scope. This can be set
as follows:

Add always allowed objects:

curl --location --request POST '<hostname>/v3/access-groups/{access-group-id}/scopes/
{scope-id}/always_allowed_permissions' \--header 'Content-Type: application/json' \
--data-raw '{
"always_allowed_permissions": [
{
"object_type": "ACCOUNT",
"permission" : "READ"

DCT administration - 69

Data Control Tower - Data Control Tower Home

}]

Response: The updated access group scope

Here it means that all objects with object type ACCOUNT and permission READ are allowed with this access group
scope. This will clear out matching object type and permissions, if any in objects attribute of access group scope.

Remove always allowed objects:

curl —--location --request POST '<hostname>/v3/access-groups/{access-group-id}/scopes/
{scope-id}/always_allowed_permissions/delete' \--header 'Content-Type: application/
json' \
--data-raw '{
"always_allowed_permissions": [
{
"object_type": "ACCOUNT",
"permission" : "READ"

} '

Response: The updated access group scope

DCT administration - 70

Data Control Tower - Data Control Tower Home

6 Central Management

DCT regularly collects telemetry data from connected engines to persist and display objects, connections, and
relationships. DCT then presents all of this information within the DCT Ul as part of its central management set of
functionality. This section will outline the associated Ul sections and actions.

6.1 Infrastructure

DCT provides a near real time list of all connected continuous data engines and lists them in an aggregate view.
From the screen displayed below, Delphix administrators can easily view and manage their engine connections.

Continuous Data Continuous Compliance Insights Admin

dSources Infrastructure

View all your connected Delphix engines.

VDBs

Search Search (All) v
Environments

Infrastructure Status Name/UUID 1 Type Host Tags

No engines found

From this screen, administrators will be able to manage engine connects via the “Connect Engine” button on the
top right corner. By clicking this button, the below dialogue will appear asking for connection details. Note: DCT will
access the engine as a registered user and, as detailed in the Deployment section, requires both a user name and
password as well as admin level access on the engine.

Connect Engine

® Engine Details Engine Details

Name
Authentication

Security Hostname
Tags Choose Engine Type
@ Virtualization
Summary
O Masking

6.2 Data Object Lists

DCT also provides global lists of dSources and VDBs so that administrators can easily view, categorize with tags, and
act upon data.

The screenshot below shows a global list view of all connected dSources.

Central Management - 71

Data Control Tower - Data Control Tower Home

Continuous Data Continuous Compliance Insights Admin

dSources dSources

An overview of data sources across your Delphix infrastructure.

VDBs

Search Search (All) v
Environments
Infrastructure Status Name 1 Type Engine Tags

No data sources found

The screenshot below shows a global list view of all connected VDBs.

Continuous Data Continuous Compliance Insights Admin

dSources VDBs
An overview of VDBs across your Delphix infrastructure.
VDBs
Search Search (All) v
Environments
Infrastructure Status Name 1 Type Engine Tags
No VDBs found

6.3 Compliance Infrastructure

DCT also displays continuous compliance infrastructure as a dashboard list as part of its Central Management set of
functionality. The below screen can be found under the “Continuous Compliance” button on the DCT header and
displays all compliance engines with associated metadata.

Continuous Data Continuous Compliance Insights Admin

Compliance Engines Compliance Engines

Overview of all compliance engines in your Delphix ecosystem.

Search Search (Al) v

Status Name/UUID Type Running Jobs Masking Usage/Total Masking Available Cores Tags

No Compliance Engines found

Central Management - 72

Data Control Tower - Data Control Tower Home

7 Integrations

Data Control Tower provides a global integration layer for a connected Delphix ecosystem, whether that is a single
or dozens of globally distributed engines, DCT drive a scalable approach to integrating Delphix into any custom
script or automation toolchain.

Aside from the comprehensive API layer (see API references(see page 75) for more detail), DCT powers automation
through Delphix-built and supported integrations with popular applications such as Terraform, ServiceNow, etc.

To see a current list of Delphix integrations, please visit Delphix Ecosystem Hub3® for more detail.

38 https://ecosystem.delphix.com/

Integrations - 73

https://ecosystem.delphix.com/
https://ecosystem.delphix.com/

Data Control Tower - Data Control Tower Home

8 Developer resources

8.1 APl requests and reporting

8.1.1 Introduction

This article showcases example requests to the various data APIs supported by DCT.

DCT provides interactive APl documentation that allows users to experiment with the APIs in their web browser.
The interactive APl documentation can be accessed by entering the hostname for DCT and the /api path into a

browser's address bar. For example, if DCT is running on host gateway.example.com3%, then enter https://
gateway.example.com/api into the browser's address bar.

To simplify development, Python and Go programming libraries are available. The Python bindings can be found
on PyPi here*®. The latest version can be installed with the following command:

pip install delphix-dct

The Go bindings can be found on go.dev here*!,

8.1.2 Engines

This section showcases some examples of querying the Engines endpoint for information about connected Delphix
Virtualization Engines. These examples leverage the generated Python bindings:

import delphix.api.gateway

import delphix.api.gateway.configuration

import delphix.api.gateway.api.management_api

cfg = delphix.api.gateway.configuration.Configuration()
cfg.host = "https://localhost/v2"

For example purposes
cfg.verify_ssl = False

Replace the string with your own API key

cfg.api_key['ApiKeyAuth'] = 'apk 3.tEd4DXFce'
api_client = delphix.api.gateway.ApiClient(configuration=cfg)
engines_api = delphix.api.gateway.api.management_api.ManagementApi(api_client)

print(engines_api.get_registered_engines())

The result should appear similar to the following:

39 http://gateway.example.com/
40 https://pypi.org/project/delphix-dct-api/
41 https://pkg.go.dev/github.com/delphix/dct-sdk-go

Developer resources - 74

http://gateway.example.com/
https://pypi.org/project/delphix-dct-api/
https://pkg.go.dev/github.com/delphix/dct-sdk-go
http://gateway.example.com/
https://gateway.example.com/api
https://pypi.org/project/delphix-dct-api/
https://pkg.go.dev/github.com/delphix/dct-sdk-go

Data Control Tower - Data Control Tower Home

{'items': [{'connection_status': 'ONLINE',
'cpu_core_count': 2,
'data_storage_capacity': 23404216320,
'data_storage_used': 11589626880,
'"hostname': 'avm.delphix.com',

'id': 1,

"insecure_ssl': True,
'memory_size': 8589934592,

'name': 'vmname',

"password': Hkkkxxx!',

'status': 'CREATED',

'tags': [,

'type': 'UNSET',
'unsafe_ssl_hostname_check': False,
'username': 'admin',

'uuid': 'ec2fbfea-928b-07f8-94c4-29feab14624f',
'version': '6.1.0.0'}]}

8.2 APl references

To access the API list for DCT version 3.0.0, click the link below and the .html file with the APl content will download.

DCT v2.0.0 APL.html

(see page 75)

Developer resources - 75

	What is Data Control Tower (DCT)?
	Release notes
	New features
	Release 3.0
	Release 2.2

	Support Matrix

	DCT concepts
	Introduction
	Concepts
	VDB groups
	Comparing Self Service Containers to VDB groups
	DCT Bookmarks
	DCT Jobs
	Tags
	Tag-Based Filtering

	Nuances
	Stateful APIs
	Local Data Availability
	Engine-to-DCT API mapping
	Local references to Global UUIDs
	Environment Representations
	Supported Data Sources/Configurations
	Process Feedback

	API Metering Instructions

	Deployment
	Docker Compose
	Installation and setup for Docker Compose
	Bootstrapping API Keys
	Custom configuration
	(3.0.0)Connecting a Delphix Engine
	DCT logs

	Kubernetes
	Installation and setup for Kubernetes
	DCT logs for Kubernetes
	Admin topics for Kubernetes

	OpenShift
	Installation and setup for OpenShift
	OpenShift authentication
	DCT logs for OpenShift
	Admin topics for OpenShift

	Engines: connecting/authenticating
	Introduction
	Truststore for HTTPS
	Authentication with engine
	HashiCorp vault
	TLS certificates

	Accounts: connecting/authenticating
	API keys
	Username/password
	LDAP/Active Directory
	SAML/SSO

	Configure LDAP/Active Directory groups
	Active Directory example
	Attributes mapping

	Replace HTTPS certificate for DCT

	DCT administration
	Authentication
	Access groups
	Access Group structure
	Accounts
	Roles
	Example configuration scenario
	User interface
	Advanced scope type

	Central Management
	Infrastructure
	Data Object Lists
	Compliance Infrastructure

	Integrations
	Developer resources
	API requests and reporting
	Introduction
	Engines

	API references

