
Data Control Tower Home
Data Control Tower

Exported on 02/21/2024

Data Control Tower – Data Control Tower Home

2

Table of Contents

1 Welcome to the Data Control Tower documentation!15

2 Quick references ...20

3 Release notes..21

3.1 New features ...21

3.1.1 Release 14.0.0...21

3.1.2 Release 13.0.0...21

3.1.3 Release 12.0.0...22

3.1.4 Release 11.0.0...23

3.1.5 Release 10.0.0...23

3.1.6 Release 9.0.0...24

3.1.7 Release 8.0.0...25

3.1.8 Release 7.0.0...25

3.1.9 Release 6.0.0...25

3.1.10 Release 5.0.1...26

3.1.10.1 Enhancements ..26

3.1.10.2 Custom roles ...28

3.1.11 Release 4.0 ..28

3.1.12 Release 3.0 ..28

3.1.13 Release 2.2 ..29

3.1.13.1 Deployment ...29

3.1.13.2 APIs..29

3.1.13.3 UI ..29

3.2 Fixed issues...30

3.2.1 Release 14.0.0.0 changes ..30

3.2.2 Release 13.0.0.0 changes ..30

3.2.3 Release 12.0.0.0 changes ..30

3.2.4 Release 10.0.1 changes ...31

Data Control Tower – Data Control Tower Home

3

3.2.5 Release 10.0.0 changes ...31

3.2.6 Release 9.0.0 changes..32

3.2.7 Release 8.0.1 changes..32

3.2.8 Release 8.0.0 changes..33

3.2.9 Release 7.0.1 changes..33

3.2.10 Release 6.0.1 changes..34

3.2.11 Release 6.0.0 changes..34

3.2.12 Release 5.0.3 changes..34

3.2.13 Release 5.0.2 changes..34

3.2.14 Release 5.0.1 changes..35

3.2.15 Release 3.0.0 changes..35

3.3 Supported versions and upgrade matrix ...35

4 DCT overview ..37

4.1 What is Data Control Tower (DCT)?...37

5 Getting started ..38

5.1 Planning your deployment..38

5.2 Container platform support..38

5.2.1 Kubernetes ..38

5.2.2 OpenShift...38

5.2.3 Docker Compose ..38

5.3 Data Control Tower deployment architecture...39

5.4 Plan your tagging strategy ...39

5.5 Plan your Access Control strategy ..40

6 Deployment ...43

6.1 Kubernetes ..44

6.1.1 Installation and setup for Kubernetes ...44

6.1.1.1 Hardware requirements..44

6.1.1.2 Kubernetes overview ..46

6.1.1.3 Installation requirements (Kubernetes)...47

Data Control Tower – Data Control Tower Home

4

6.1.1.4 Installing DCT..47

6.1.2 Ingress setup...51

6.1.2.1 Expose proxy HTTP port (80) for non-encrypted traffic51

6.1.2.2 Ingress controller installation and route creation...52

6.1.3 Bootstrapping API keys ..55

6.1.3.1 Bootstrap first API key..56

6.1.4 DCT logs for Kubernetes ..58

6.1.5 Admin topics ...58

6.1.5.1 Deployment upgrade for Kubernetes...59

6.1.5.2 Factory reset DCT for Kubernetes ...61

6.2 OpenShift...62

6.2.1 Installation and setup for OpenShift ..62

6.2.1.1 Hardware requirements..62

6.2.1.2 Installation requirements (OpenShift) ...64

6.2.1.3 Installation process ..65

6.2.1.4 Configure Ingress..69

6.2.2 OpenShift authentication..71

6.2.2.1 Introduction ...71

6.2.2.2 Enable OAuth2 authentication ...71

6.2.3 DCT logs for OpenShift...72

6.2.4 Admin topics for OpenShift ..72

6.2.4.1 Deployment upgrade for OpenShift ...72

6.2.4.2 Factory reset DCT for OpenShift ..75

6.3 Docker Compose ..75

6.3.1 Installation and setup for Docker Compose ...76

6.3.1.1 Hardware requirements..76

6.3.1.2 Installation requirements (Docker Compose)...77

6.3.1.3 Unpack and install DCT ..78

6.3.1.4 Run DCT...78

Data Control Tower – Data Control Tower Home

5

6.3.1.5 Initial logging configuration ...79

6.3.2 Bootstrapping API Keys..79

6.3.2.1 Bootstrap first API key..80

6.3.3 Custom configuration...81

6.3.3.1 Introduction ...81

6.3.3.2 Bind mounts ..81

6.3.4 Docker logs..83

6.3.5 Migration topics ..83

6.3.5.1 Migrate to Kubernetes ..84

6.3.5.2 Migrate to OpenShift...87

6.3.6 Admin topics for Docker Compose ...90

6.3.6.1 Backup DCT on Docker Compose..90

6.3.6.2 Deployment upgrade for Docker Compose...91

6.3.6.3 Factory reset DCT for Docker Compose..93

6.4 Engines: connecting/authenticating..94

6.4.1 Introduction ...94

6.4.2 Truststore for HTTPS ...94

6.4.3 Authentication with engine...95

6.4.4 HashiCorp vault...95

6.4.4.1 Vault authentication and registration ..95

6.4.4.2 Token ...95

6.4.4.3 AppRole ...96

6.4.5 TLS certificates ...97

6.4.5.1 Retrieving engine credentials ...97

6.5 Accounts: connecting/authenticating ...97

6.5.1 API keys ...98

6.5.1.1 Create and manage API Keys...98

6.5.2 Username/password ... 100

6.5.2.1 Password policies.. 102

Data Control Tower – Data Control Tower Home

6

6.5.2.2 Understanding password policies .. 102

6.5.2.3 Default password policy .. 102

6.5.2.4 Changing the password policy.. 102

6.5.2.5 Disabling local username/password authentication................................. 103

6.5.3 LDAP/Active Directory ... 103

6.5.3.1 Configuration.. 103

6.5.3.2 Configure LDAP/Active Directory groups... 108

6.5.4 SAML/SSO.. 111

6.5.4.1 Identity provider setup... 111

6.5.4.2 DCT SAML/SSO setup ... 112

6.5.4.3 Login ... 113

6.5.4.4 Troubleshooting... 113

6.5.4.5 Attributes mapping .. 114

6.6 Replace HTTPS certificate for DCT .. 116

6.7 External database support .. 117

6.7.1 Overview ... 117

6.7.2 Requirements ... 117

6.7.3 Setup... 118

6.7.3.1 PostgreSQL database setup ... 118

6.7.3.2 DCT setup... 118

6.7.4 Backup and recovery ... 119

6.7.5 External database migration or upgrade .. 120

6.7.6 DCT upgrade .. 120

6.8 DCT data backup, recovery, and migration .. 121

6.8.1 Example deployment scenarios.. 121

6.8.2 Prerequisites .. 122

6.8.3 Directions ... 122

6.8.3.1 1. Backup.. 122

6.8.3.2 2. Restore ... 123

Data Control Tower – Data Control Tower Home

7

6.8.3.3 3. Additional environment configuration.. 124

6.9 Exporting DCT logs to Splunk ... 124

6.9.1 Overview ... 124

6.9.2 Setting up a Splunk instance... 124

6.9.3 Enable Splunk log forwarding ... 124

6.9.4 Search for events in Splunk... 125

6.10 Generating a support bundle... 126

6.10.1 Find the “collect_bundle.sh” script ... 126

6.10.2 Execute the “collect_bundle.sh” script when DCT is running in
Kubernetes ... 127

6.10.3 Execute the “collect_bundle.sh” script when DCT is running in Docker-
Compose .. 127

6.10.4 Find the generated support bundle tar file ... 128

7 Data governance .. 129

7.1 DCT administration.. 129

7.1.1 Operations in DCT.. 129

7.1.1.1 Operations Monitor Bar ... 132

7.1.2 Tags .. 132

7.1.2.1 Tags management... 132

7.1.2.2 Administrative tagging .. 133

7.1.2.3 Tags powering attribute-based Access Control .. 134

7.1.3 Access Control... 135

7.1.3.1 Access model overview... 136

7.1.3.2 Accounts: Manual, LDAP/AD, or SSO/SAML.. 137

7.1.3.3 Access Groups: Creation and account assignment 141

7.1.3.4 Roles: Creation and assignment ... 147

7.1.3.5 Objects: Refine permission to targeted objects... 150

7.1.4 VDB templates ... 157

7.1.4.1 Creating templates .. 158

7.1.4.2 Importing templates .. 158

Data Control Tower – Data Control Tower Home

8

7.1.4.3 Using templates ... 159

7.1.5 API metering... 160

7.1.5.1 API metering instructions.. 160

7.1.6 Client telemetry .. 160

7.2 Central governance workflows ... 162

7.2.1 Managing engines (Continuous Data).. 162

7.2.1.1 Infrastructure.. 162

7.2.1.2 Engine overview ... 163

7.2.1.3 Infrastructure connection wizard.. 165

7.2.2 Managing dSources... 170

7.2.2.1 Managing dSources... 170

7.2.2.2 dSource overview... 171

7.2.2.3 Timeflow visibility .. 171

7.2.2.4 Access auditing.. 172

7.2.2.5 dSource linking... 172

7.2.3 Managing VDBs.. 173

7.2.3.1 VDB overview ... 173

7.2.3.2 VDB active timeline.. 173

7.2.3.3 VDB timeline history .. 174

7.2.3.4 VDB bookmarks ... 174

7.2.3.5 VDB access .. 175

7.2.3.6 VDB templates ... 175

7.2.4 Managing environments (Continuous Data) .. 176

7.2.4.1 Global environments list.. 176

7.2.4.2 Manage environments... 177

7.2.4.3 Edit host details ... 177

7.2.5 Managing bookmarks.. 178

7.2.5.1 Global Bookmarks List .. 178

7.2.6 Replication management .. 179

Data Control Tower – Data Control Tower Home

9

7.2.6.1 Introduction .. 179

7.2.6.2 Prerequisites .. 179

7.2.6.3 User interface... 179

7.2.6.4 API... 181

7.2.6.5 Replication relationship ... 183

7.3 Insight reports .. 190

7.3.1 Central governance insights.. 190

7.3.2 VDB Inventory... 190

7.3.3 dSource Inventory .. 190

7.3.4 Source Ingestion Metrics .. 190

7.3.5 Compliance Job Executions report... 191

7.3.6 Block Storage ... 191

7.3.7 Activity Audit Log summary .. 191

7.3.8 Compliance Engine Performance report .. 191

7.3.9 Data Engine Performance report .. 191

7.4 Tabular customization support for DCT... 192

7.4.1 Introduction .. 192

7.4.1.1 Key enhancements .. 193

8 Continuous Data workflows .. 194

8.1 DevOps TDM .. 194

8.2 Developer experience .. 195

8.3 Self-service vs. DCT developer experience .. 195

8.3.1 Key similarities ... 196

8.3.2 Key differences .. 196

8.4 Creating and managing bookmarks ... 197

8.4.1 Create a Bookmark .. 197

8.4.1.1 Create a bookmark from an existing snapshot.. 198

8.4.2 Bookmark API Documentation.. 201

8.4.3 Create a Bookmark at the current time for multiple VDBs 201

Data Control Tower – Data Control Tower Home

10

8.4.4 Creating a bookmark from a chosen timepoint ... 202

8.5 VDB operations .. 204

8.5.1 VDB provisioning wizard.. 206

8.5.1.1 Supported database platforms ... 206

8.5.1.2 Step examples.. 206

8.5.1.3 Limitations.. 212

8.5.2 VDB refresh .. 212

8.5.2.1 Overview ... 212

8.5.2.2 User interface... 212

8.5.3 Active timelines.. 216

8.5.3.1 Active Timeline View ... 216

8.5.3.2 Additional notes ... 217

8.5.4 Timeline history.. 217

8.5.4.1 Timeline History view .. 217

8.5.4.2 The Timeline History user interface.. 218

8.5.4.3 Non-active timelines .. 219

8.5.4.4 Time concepts within the Timeline History Tab .. 219

8.5.4.5 Timeflow operations.. 220

8.5.4.6 API documentation .. 222

8.5.5 Locking and unlocking a VDB ... 223

8.5.5.1 Locking and unlocking a VDB via API ... 225

8.6 Linking Wizard.. 225

8.6.1 Overview ... 225

8.6.1.1 Limitations in MSSQL dSource linking ... 226

8.6.1.2 Prerequisites .. 226

8.6.2 Using the Linking Wizard ... 226

8.6.2.1 1. Select Data Source step .. 226

8.6.2.2 2. dSource Type step ... 227

8.6.2.3 3. dSource Configuration step .. 228

Data Control Tower – Data Control Tower Home

11

8.6.2.4 4. Data Management step ... 228

8.6.2.5 5. Policies step... 229

8.6.2.6 6. Hooks step ... 230

8.6.2.7 7. Summary step .. 230

8.6.3 Adding an AppData dSource ... 231

8.6.3.1 Steps effected during the Linking process... 231

8.6.4 Adding an Oracle Staging Push dSource.. 233

8.6.4.1 Prerequisites .. 233

8.6.4.2 Linking process.. 234

8.6.4.3 Completion ... 237

8.6.5 Adding a MSSQL Staging Push dSource .. 237

8.6.5.1 Prerequisites .. 237

8.6.5.2 Linking process.. 237

8.6.5.3 Completion ... 239

9 Continuous Compliance workflows.. 240

9.1 Listing and searching compliance jobs.. 240

9.2 Consolidated operations (intelligent syncing) ... 241

9.3 Managing engines (Continuous Compliance).. 241

9.3.1 Engine overview ... 242

9.3.2 Engine-based operations access.. 243

9.4 Compliance jobs .. 243

9.4.1 Job UI.. 244

9.4.1.1 Global compliance jobs list ... 244

9.4.1.2 Compliance job overview .. 244

9.4.1.3 Access tab.. 245

9.4.1.4 Execution history tab ... 245

9.4.1.5 Execution details.. 246

9.4.2 Copy job.. 247

9.4.2.1 User interface documentation .. 248

Data Control Tower – Data Control Tower Home

12

9.4.2.2 API documentation .. 248

9.4.3 Execute job ... 250

9.4.3.1 User interface... 252

9.4.4 Migrate job ... 252

9.4.5 Delete job.. 253

9.5 Read-only algorithms... 254

9.5.1 Overview ... 254

9.5.1.1 Feature Limitations.. 254

9.5.1.2 Algorithms page... 254

9.5.1.3 Algorithm Details Overview page.. 255

9.5.1.4 Algorithm Revisions page.. 256

10 Hyperscale Orchestrator UI ... 258

10.1 Overview ... 258

10.2 Implementation introduction... 259

10.2.1 Truststore for HTTPS .. 259

10.2.2 Authentication with Hyperscale Orchestrators.. 259

10.2.3 Hyperscale deployment type... 260

10.2.4 Editing and unregistering Hyperscale Orchestrators................................. 260

10.3 Managing Hyperscale objects... 261

10.3.1 Introduction .. 261

10.3.2 Hyperscale executions .. 262

10.3.3 Hyperscale jobs.. 262

10.3.4 Hyperscale job engine selection ... 264

10.3.5 Hyperscale job table configuration... 265

10.3.6 Executing Hyperscale jobs .. 266

10.3.7 Creating Hyperscale jobs .. 268

10.3.8 Hyperscale Compliance Engines .. 271

10.3.9 Hyperscale mount points .. 273

10.3.10 Hyperscale connector configurations .. 275

Data Control Tower – Data Control Tower Home

13

11 Integrations .. 277

12 DCT concepts... 278

12.1 Introduction .. 278

12.2 Concepts .. 278

12.2.1 Virtual Database (VDB) groups ... 278

12.2.2 Comparing Self-Service containers to VDB groups 279

12.2.3 Bookmarks ... 280

12.2.4 Jobs .. 280

12.2.5 Tags .. 281

12.2.6 Tag-based filtering... 281

12.3 Nuances.. 282

12.3.1 Stateful APIs... 282

12.3.2 Local data availability .. 282

12.3.3 Engine-to-DCT API mapping.. 282

12.3.4 Local references to global UUIDs ... 282

12.3.5 Environment representations.. 282

12.3.6 Supported data sources/configurations .. 283

12.3.7 Process feedback .. 283

13 DCT Toolkit... 284

13.1 Introduction .. 284

13.2 Compatibility .. 284

13.3 New features .. 284

13.3.1 Version 1.2.0 .. 284

13.4 Installation and setup .. 285

13.4.1 Installation.. 285

13.4.2 Setup... 286

13.5 Usage guide.. 288

13.5.1 Examples .. 288

13.5.1.1 --json/-js and --csv/-cs option examples .. 290

Data Control Tower – Data Control Tower Home

14

13.6 API key encryption ... 291

13.6.1 Overview ... 291

13.6.2 Implementation.. 291

13.6.3 Backward compatibility ... 292

13.6.4 Example .. 292

13.7 Configure multiple DCT instances in dct-toolkit .. 292

13.7.1 Overview ... 292

13.7.2 Example .. 292

13.8 Logging... 293

14 Developer resources.. 294

14.1 API requests and reporting ... 294

14.1.1 Introduction .. 294

14.1.2 Engines ... 294

14.2 API references.. 295

Data Control Tower – Data Control Tower Home

Welcome to the Data Control Tower documentation! – 15

•

•

•

1 Welcome to the Data Control Tower documentation!
This information explains how to deploy Data Control Tower (DCT), use its features, or tune its
configurations for optimal performance. The content has been organized into several categories, available
from the lefthand navigation.

List of Data Control Tower documentation versions in PDF format.

DCT 13.0.0 documentation…

 (see page 15)

DCT 12.0.0 documentation…

 (see page 15)

Data Control Tower – Data Control Tower Home

Welcome to the Data Control Tower documentation! – 16

•

•

•

DCT 11.0.0 documentation…

 (see page 15)

DCT 10.0.0 documentation…

 (see page 15)

DCT 9.0.0 documentation.…

 (see page 15)

Data Control Tower – Data Control Tower Home

Welcome to the Data Control Tower documentation! – 17

•

•

•

DCT 8.0.0 documentation.…

 (see page 15)

DCT 7.0.0 documentation.…

 (see page 15)

DCT 6.0.0 documentation.…

 (see page 15)

Data Control Tower – Data Control Tower Home

Welcome to the Data Control Tower documentation! – 18

•

•

•

DCT 5.0.0 documentation.…

 (see page 15)

DCT 4.0.0 documentation.…

 (see page 15)

DCT 3.0.0 documentation.…

 (see page 15)

Data Control Tower – Data Control Tower Home

Welcome to the Data Control Tower documentation! – 19

•

•

DCT 2.2.0 documentation.…

 (see page 15)

DCT 2.0.0 documentation.…

 (see page 15)

Data Control Tower – Data Control Tower Home

1 https://dct.delphix.com/docs/latest/dct-overview
2 https://dct.delphix.com/docs/latest/deployment
3 https://dct.delphix.com/docs/latest/new-features
4 https://dct.delphix.com/docs/latest/fixed-issues
5 https://dct.delphix.com/docs/latest/dct-concepts

Quick references – 20

•
•
•
•
•

2 Quick references
Overview1

Deployment2

New features3

Fixed issues4

Concepts5

https://dct.delphix.com/docs/latest/dct-overview
https://dct.delphix.com/docs/latest/deployment
https://dct.delphix.com/docs/latest/new-features
https://dct.delphix.com/docs/latest/fixed-issues
https://dct.delphix.com/docs/latest/dct-concepts
https://dct.delphix.com/docs/latest/dct-overview
https://dct.delphix.com/docs/latest/deployment
https://dct.delphix.com/docs/latest/new-features
https://dct.delphix.com/docs/latest/fixed-issues
https://dct.delphix.com/docs/latest/dct-concepts

Data Control Tower – Data Control Tower Home

6 https://dct.delphix.com/docs/latest/installation-and-setup-for-kubernetes
7 https://dct.delphix.com/docs/latest/installation-and-setup-for-openshift

Release notes – 21

•
•
•

•

•

•

•

3 Release notes
This section is used to learn what the newest version of Data Control Tower has to offer. In addition, the
fixed and known issues per version are detailed.

New features (see page 21)

Fixed issues (see page 30)

Supported versions and upgrade matrix (see page 35)

3.1 New features

3.1.1 Release 14.0.0

New APIs for PostgreSQL
New APIs have been added, providing the function to create, update, or delete database APIs for
PostgreSQL.
Bug fixes and improvements
This release focuses on bug fixes and general improvements.

3.1.2 Release 13.0.0

Algorithm centralization
To enable better visibility into compliance, masking algorithms across all connected Continuous
Compliance Engines can now be centrally viewed in DCT.
Expanded source linking
Over the past few years, Staging Push has been introduced, allowing users to bring their own data to

Delphix has announced the depreciation of support for Docker Compose with DCT version
13.0.0. The January 2024 release starts a 12-month depreciation period for all supported
versions on Docker Compose. All prior and current product versions will continue to be
supported on Docker Compose until January 2025. However, production DCT workloads in
Docker Compose are not supported.
It is highly recommended that new DCT installations are performed on Kubernetes6 or
OpenShift7.

https://dct.delphix.com/docs/latest/installation-and-setup-for-kubernetes
https://dct.delphix.com/docs/latest/installation-and-setup-for-openshift
https://dct.delphix.com/docs/latest/installation-and-setup-for-kubernetes
https://dct.delphix.com/docs/latest/installation-and-setup-for-openshift

Data Control Tower – Data Control Tower Home

Release notes – 22

•

•

•

•

•

•

•

•

•

•

•

•

Continuous Data. The DCT UI now supports linking for Oracle, SQL Server using Staging Push. In
addition, ASE and SDK connectors such as Postgres, Db2, MySQL, HANA, and MongoDB.
Hyperscale Compliance UI enhancements
Several improvements have been added, including enabling the management of Continuous
Compliance Engine assignments of Hyperscale Jobs.
DCT Toolkit enhancements
Based on user feedback, several improvements have been made to the fully supported CLI for
DCT. Notably, dct-toolkit allows users to provide engine names as values for 'id' options.
Continuous Data jobs progress
Users can track job progress in real-time through the Operations UI.
Improved Replication visibility
Replication, used for data movement, disaster recovery protection, Sensitive Data Distribution, and
more, requires setting up relationships between Continuous Data Engines. To provide better visibility
on these relationships, they have been added to DCT. To further simplify this user experience, the
target Continuous Data Engine and dataset are now linked together.
Engine Performance trend lines
Historical trend lines have been added to the recently introduced Engine Performance reports.

3.1.3 Release 12.0.0

Delphix Kubernetes driver
Virtual databases (vDB) can be provisioned into containers through Helm charts and kubectl
commands using a new, pre-built DCT integration. Teardown of these containers can also be
automated, enabling ephemeral infrastructure for Kubernetes-based applications.
Engine performance reports
New Continuous Data and Compliance reports have been added to improve the central management
of engine infrastructure performance. You can now view allocated resources and track performance
for all connected engines, including disk latency, network latency, and throughput.
Hyperscale Compliance jobs
DCT now has support for creating, managing, and executing Hyperscale Compliance jobs. The
concept of Engine Pools have been introduced along with several other enhancements to refine the
overall experience.
User experience improvements
Several enhancements including customizing the columns across all tables, increased color contrast
for better accessibility, simplified navigation across tabs, and a variety of visual style improvements.
Replication tag inheritance
DCT now offers API-based simplified tag management for parent/child replication deployments,
optionally syncing source tags to a target replica.
Oracle and SQL Server source linking
Linking sources for Oracle and SQL Server is now supported in the user experience, along with
creating bookmarks.
Terraform provider
A new Terraform resource facilitates creating and deleting Oracle dSources. This expands on the
existing data source support with the provider.

Data Control Tower – Data Control Tower Home

8 http://download.delphix.com/
9 http://download.delphix.com/

Release notes – 23

•

•

•

•

•

•

•

•

•

•

•

•

•
•

3.1.4 Release 11.0.0

dSource linking support (API only)
The ability to create dSources for MSSQL (single instance and cluster), Oracle Staging Push, and
MSSQL Staging Push has been added. In addition, dSource linking for older engine versions back to
6.0.7 is now supported.
Last Refresh column added to the VDB tab
A new column called Last Refresh has been added to the VDB tab, which shows the last refresh date/
time of a VDB.
download.delphix.com8 enhancements for container-based upgrades
Changes have been made to download.delphix.com9, making it easier to build installation and
upgrade automation for DCT using repository-management products like JFrog Artifactory.

If you are installing DCT for the first time, please follow the standard installation
documentation.

If you have an existing installation of DCT you must take the following steps to perform
upgrades:

Update the registry URL to the new address (http://dct.download.delphix.com and/or
http://hyperscale.download.delphix.com) in the values.yaml file.

Update the credentials with the new permanent credentials in the values.yaml file.

If your organization leverages an allow (white) list, please update the list with the new
repository URL(s).

3.1.5 Release 10.0.0

dSource linking support (API only)
We have added the ability to create dSources for Oracle, ASE, and Postgres via API. This is currently
available for Delphix Continuous Data Engines on version 8.0 and above. Future releases will include
full support for all data sources and inclusion of older engine versions.
Hyperscale Compliance UI (read-only)
DCT has released a Hyperscale UI under controlled availability. Please reach out to your account
team to activate this feature. This enhancement includes the ability to:

Register Hyperscale Orchestrators with DCT.

Visualize Hyperscale infrastructure configuration parameters such as clusters of engines and
mount points.

Report on Hyperscale Jobs and Job executions, including near-realtime process feedback.
Compliance Job Executions report
For connected Continuous Compliance Engines, DCT now has a new report under DCT Insights that

http://download.delphix.com/
http://download.delphix.com/
http://download.delphix.com/
http://download.delphix.com/
http://dct.download.delphix.com
http://hyperscale.download.delphix.com

Data Control Tower – Data Control Tower Home

Release notes – 24

•

•

•

•

•

•

•

•

•

•

displays all recent job executions (including DCT initiated, engine initiated, and Hyperscale initiated
jobs) as well as relevant compliance metrics.
Provisioning wizard enhancements
The DCT provisioning wizard now supports provisioning Oracle multi-instance (multi-tenant) and ASE
VDBs.
Operations page
The DCT Operation page now includes initiator details, which provides visibility of what user/account
initiated a job.
Support for creating a bookmark at point-in-time
DCT now has the ability to create bookmarks on VDBs under a specified point-in-time via both API
and UI. This feature is only compatible for databases that support LogSync and have it enabled.
VDB lock/unlock
Users now have the ability to lock a VDB, preventing any sort VDB-based activity (refresh, start, stop,
delete, and create bookmark).
Custom hook support in the DCT UI
Delphix users now have the ability to add custom hooks to a VDB at the time of provision (as part of
the provision wizard UI) and update them under a VDB details page, so that they will execute during
refresh operations.

3.1.6 Release 9.0.0

Jenkins support
An official Jenkins plugin is now available for Data Control Tower, joining the existing ServiceNow
and Terraform integrations. This plugin helps automate the use of data in your CI/CD pipelines and
includes support for provisioning and destroying VDBs.
DCT Toolkit
We’ve launched a new command line interface (CLI) offering, the DCT Toolkit. The DCT Toolkit allows
for remote operation and control of Data Control Tower via your local terminal. Over time, this will
replace the previously available DxToolkit.
Infrastructure wizard
The create infrastructure flow now supports adding Windows standalone and cluster hosts, as well
as Linux cluster hosts. This is expanded from the previous flow that supported standalone Linux
hosts. This differs from the workflow on the Continuous Data engine in that it represents a single
place to create environment host connections for all connected Delphix engines.
Provisioning wizard
The data provisioning workflow now includes additional database types, including Oracle Single
Instance Multi-tenant, Oracle Multiple Instance Single Tenant, and SQL Server Multiple Instance
Single Tenant.
Operations dashboard improvements
Previously, all users could view all operations run by any user on the Operations page. Role-based
access can now be provided to different users, showing only operations the user has access to.
Simplified text is now used to define the Type column, as well as the Type and Engine Name in the
details page.

Data Control Tower – Data Control Tower Home

Release notes – 25

•

•

•

•

•

•

•

•

•

•

Activity Audit Log Summary report
The Activity Audit Log Summary provides a high-level audit log summary capturing the utilization of
DCT by displaying user activity and the historical count of actions executed within the platform.
Replication mappings
This feature helps users differentiate between replicated objects and original objects, in case of
master and replicated engine, both are registered with DCT.

3.1.7 Release 8.0.0

Operations dashboard
Monitor and manage enterprise data activities in real time using a new central view. This provides
visibility to the current status across the full complement of Delphix transactions, including provision,
refresh, teardown, and compliance jobs.
Provisioning wizard enhancements
The data provisioning wizard has been expanded to support additional types, including Oracle Single
Instance Linked CDBs and Microsoft SQL Server Single Instance workflows. This will now allow you
to provision more data types directly from Data Control Tower.
Advanced search tags support
The advanced search capabilities now support all user-generated tags. You can use personalized
tags related to your unique business needs to refine your search results, such as team names or
other specific data points.

3.1.8 Release 7.0.0

Provision VDB UI
Extending the Developer Experience capability in DCT, users can now provision single-tenant Oracle
databases from the user interface using an intuitive wizard workflow.
Refresh VDB UI enhancements
The VDB list can now be opened in a searchable, paginated list selector from within a dialog by
clicking the select button in the input. Additionally, refreshing a VDB by a bookmark is now available.
VDB template import
Importing and removing imported VDB templates from connected engines is now an available action
from the "VDB Config Templates" page.
Environment details enhancements
Managing cluster environment infrastructure has been made easier with the ability to edit host details
directly from the page.

3.1.9 Release 6.0.0

Developer Self-Service UI
Developers and admins now have the ability to centrally orchestrate common Continuous Data and
developer operations from the DCT UI. This includes the ability to refresh, rewind, bookmark, and
bookmark share (refresh to relative). This functionality also exposes the notion of time flows (non-

Data Control Tower – Data Control Tower Home

Release notes – 26

•

•

•

•

•

•

•

•

•

•

•

active timelines), which is a critical tool for viewing past work on a VDB, such as the chronology of
test results.
Central compliance orchestration
The compliance job UI now enables job orchestration and reporting. This includes Job Copy and
Execute functions as well as a complete historical job execution log within each compliance job’s
details view.
Bookmark UI
Developers and admins now have added visibility of bookmarks, both globally and contextualized, to
individual VDBs. These visualizations are dual purpose; for administrators, these screens help with
reporting and tagging on bookmarks, while for developers, these screens act as a catalog of
actionable data references.
Global Bookmark List
View all bookmarks across your entire connected Delphix ecosystem. This screen will show
bookmarks for both single VDBs and VDB groups.
VDB Bookmark List
See all bookmarks tied to this individual VDB. This is helpful for sharing bookmarks with team
members who have a compatible VDB (same parent and provision point).
Environment details page
Users can now orchestrate common environment actions via the DCT UI including enable, disable,
environment refresh, and delete, as well as editing host details. Note, editing host details is only
applicable to standalone environments at this time.
Access visibility
Object detail pages will include an access tab that provides visibility to user access and the
associated permissions for each user. This is a critical enabler for permissions visibility and auditing.
Copy/delete functionality on role scopes
Scoped roles can now be copied and deleted within the DCT UI. This will enable easier administration,
especially around the use of custom roles, as admins can now copy and modify new roles from
templates.
External Postgres DB support
DCT now supports the use of an external Postgres database to house DCT metadata. Previously, DCT
supplied and managed its own database, requiring persistent storage within the container platform.

3.1.10 Release 5.0.1

3.1.10.1 Enhancements

Data scoped Access Group

Enhancement in roles
Associated permissions in roles are changed from 'string' type to 'permission object' type. For
details, see the Role schema in the API References (see page 295).

Custom roles
In addition to the 5 pre-seeded fixed roles (Admin, Monitoring, DevOps, Masking, and Owner),
DCT provides flexibility to create new custom roles as per user need. Users (Accounts) can
create new custom roles by encapsulating any combination of permissions. The custom roles

Data Control Tower – Data Control Tower Home

Release notes – 27

•

•

•

•

•

•

•

•

•

•

•

•

can be configured through a UI configuration screen (screenshot below), in addition to a set
of APIs to manage roles. For details, see the API References (see page 295).

Updates to existing RBAC model
For better usability and allow to set more granular permissions there are following enhancements in
the RBAC model:

Renamed Access Group "Policy" to Access Group "Scope"

Renamed the following APIs related to Access Group actions

Add scope to an Access Group
POST: /access-groups/{accessGroupId}/policies → POST /access-
groups/{accessGroupId}/scopes

Remove scope from Access Group
DELETE /access-groups/{accessGroupId}/policies/{policyId} →
 DELETE /access-groups/{accessGroupId}/scopes/{scopeId}

Get Access Group scope
GET /access-groups/{accessGroupId}/policies/{policyId} → GET /
access-groups/{accessGroupId}/scopes/{scopeId}

Update Access Group scope
PATCH /access-groups/{accessGroupId}/policies/{policyId} →
 PATCH /access-groups/{accessGroupId}/scopes/{scopeId}

Add object tags to Access Group scope
POST /access-groups/{accessGroupId}/policies/{policyId}/object-

tags → POST /access-groups/{accessGroupId}/scopes/{scopeId}/
object-tags

Remove object tags from Access Group scope
POST /access-groups/{accessGroupId}/policies/{policyId}/object-

tags/delete → POST /access-groups/{accessGroupId}/scopes/
{scopeId}/object-tags/delete

Add objects to Access Group scope
POST /access-groups/{accessGroupId}/policies/{policyId}/objects

→ POST /access-groups/{accessGroupId}/scopes/{scopeId}/objects

Remove objects from Access Groups scope
POST /access-groups/{accessGroupId}/policies/{policyId}/

objects/delete → POST /access-groups/{accessGroupId}/scopes/
{scopeId}/objects/delete

Renamed the "everything" flag to "scope_type"
In order to make it more understandable, we have renamed the everything flag to scope_type.
There are three possible values for scope_type i.e. SIMPLE, SCOPED and ADVANCED. The

Data Control Tower – Data Control Tower Home

Release notes – 28

•

•

•
•

•

•

•
•
•
•

•
•
•
•
•

•
•
•
•
•
•
•
•

value SIMPLE corresponds to everything=true and SCOPED corresponds to everything=false.
The value ADVANCED for scope_type is new enhancement to setting permissions which
allows users to set permissions (e.g. READ, DELETE) for an object. There is more information
about ADVANCED scope in next section.

Access Group Scope: Advanced scope type
In Add objects to access group scope API, now user can define permissions level checks as
well for an object. For example, earlier when object_id and and object_type are provided in
request payload, all permissions that are defined in scope are applied to this object. But now
user can define specific permissions.

Masking jobs

CRUD APIs, COPY, Connectors CRUD
Masking job execution

Connector Credentials

Execution API

3.1.10.2 Custom roles

Accounts can create new instances of role encapsulating any combination of permission.
Role name must be unique.
Custom roles can be updated. Accounts can add or remove permissions to/from the custom roles.
Custom roles can be deleted. (If they are not associated with any Access Group).

3.1.11 Release 4.0

Environment Overview List
Un-virtualized Source Sizing Report
Global VDB Templates
Scoped Access Control
LDAP/AD and SAML/SSO Configuration UI

3.1.12 Release 3.0

Cluster Node (RAC) management APIs
Ability to disable username/password authentication globally
LDAP/Active Directory groups
CDBs/vCDBs APIs
VDB Provisioning / update for EDSI (AppData) platforms
Engine registration wizard
Access Groups Management UI
Compliance Engine Management

Data Control Tower – Data Control Tower Home

Release notes – 29

•

•
•
•
•
•
•
•
•

•
•

•

•

•

•
•

•

•

•
•

•

3.1.13 Release 2.2

3.1.13.1 Deployment

Introducing Kubernetes and OpenShift support

3.1.13.2 APIs

Registration of Continuous Compliance Engines
Masking Connectors
“Move Masking Job”
Masking of mainframe objects
Provisioning enhancements for Oracle multi-tenant and RAC
LDAP/Active Directory authentication
Password management
Initial access management by Permissions, Roles, Policies, and Access Groups (permissions applied
to all objects of a type e.g. Stop VDB permission on all VDBs)
Distributed tracing and logging (Trace ID propagated down call stack)
Bulk delete of tags

3.1.13.3 UI

Continuous Data

Added tag support to the Infrastructure page

New dSources page

New VDBs page
Insights

Added an export behavior to the Storage Summary report

New dSource Inventory report

New VDB Inventory report
Admin

New Accounts page

Data Control Tower – Data Control Tower Home

Release notes – 30

3.2 Fixed issues

3.2.1 Release 14.0.0.0 changes

Bug Number Description

APIGW-7090 Fixed an issue where the username was not displayed in the top navigation
bar, if logging in using anything other than username/password.

3.2.2 Release 13.0.0.0 changes

Bug Number Description

APIGW-4971 Fixed a problem when VDB_GROUP_REFRESH job's update time did not get

updated on receiving job updates for the underlying VDB_REFRESH jobs.

APIGW-6705 Fixed an installation problem when masking database migration runs out of
memory for large tables.

3.2.3 Release 12.0.0.0 changes

Bug Number Description

APIGW-6240
APIGW-6241

Fixed a memory exhaustion issue that caused frequent HTTP 500 errors.

APIGW-5052 Fixed an issue when viewing the Summary screen after provisioning a vDB in
DCT where the dSource summary name was showing the vDB name.

APIGW-5511 Added the ability to unregister engines in the UI.

APIGW-5585 Fixed an issue where users were unable to logout following SSO token
expiration.

Data Control Tower – Data Control Tower Home

Release notes – 31

3.2.4 Release 10.0.1 changes

Bug Number Description

APIGW-5406 Fixed an issue where the VDBGroup update API gives an internal error if
vdb_ids are the same as ones already present in VDBGroup.

APIGW-5419 Fixed an issue where the VDBGroup delete API gives a 404 error if underlying
VDBs are already deleted or not present.

APIGW-5418,
APIGW-5517

Fixed an issue where VDB provisioning via DCT GUI fails with, “There was an
error trying to process your request.”

APIGW-5570 Fixed an issue preventing the link of a Postgres database as a dSource.

APIGW-5571 Fixed an issue where the Provision VDB -> dSource Listing would not show
more than 25 items.

APIGW-5574 Hyperscale datasets tables-or-files list and search APIs now return all instead
of filtering by dataset.

APIGW-5578 Fixed an issue where Pagination was not working for some of the pages in a
testing environment.

3.2.5 Release 10.0.0 changes

Bug Number Description

APIGW-3931 Fixed an error found when loading the LDAP config page in the UI, if the
LDAP config domains have empty values.

APIGW-3961 Fixed the issue where the Environment link to the dSource detail view is
broken.

APIGW-4270 Cleaned up pending jobs left by deleted engines.

Data Control Tower – Data Control Tower Home

Release notes – 32

Bug Number Description

APIGW-5056 Addressed VDB provisioning failures where there were a lot of concurrent
requests.

3.2.6 Release 9.0.0 changes

Bug Number Description

APIGW-3772 Replicated VDBs/dSources are now identified in the Provisioning wizard.

APIGW-3931 Fixed a null pointer exception during LDAP configuration without a domain.

APIGW-3979 Fixed an issue where the Import VDB Configuration templates dialog was
showing the engine ID in error messages. It is now changed to show engine
names.

APIGW-3983 Fixed an issue where a new masking job could not be started from DCT when
the previous job was cancelled on the masking engine.

APIGW-4009 Fixed an issue where the first and last name will be cleared if incorrect names
were entered for SSO.

APIGW-4010 Fixed an issue in the UI where first and last name attributes cannot be reset.

3.2.7 Release 8.0.1 changes

Bug Number Description

APIGW-4324 Fixed an issue where users who upgraded to DCT 8.0.0 were not able to
interact with the UI or connect to the GraphQL service container.

APIGW-4317 Fixed an issue where an error would occur when searching for a VDB in the
relative refresh UI.

Data Control Tower – Data Control Tower Home

Release notes – 33

3.2.8 Release 8.0.0 changes

Bug Number Description

APIGW-3764 Removed THE requirement on setting credentials if a masking job execution
happens on the origin engine.

APIGW-3771 Allows the policy name to be empty when provisioning a VDB.

APIGW-3783 Allows for an existing ImagePullSecret to be provided to to pull docker
images.

APIGW-3985 Fixed the "VDB Container is part of a container" error while refreshing from
bookmark directly on the VDB > Bookmark tab.

APIGW-3990 Fixed the broken view for a bookmark that has multiple VDBs on the Data >
Bookmark tab.

3.2.9 Release 7.0.1 changes

Bug Number Description

APIGW-3592,
APIGW-3594

Previously, a non-admin user that was granted access to a VDB, but not its
environment, would get an error accessing the VDB overview. A fix has been
implemented to show that the access error is with the environment and not the
VDB.

APIGW-3775 Fixed an issue where refreshing from the bookmark wizard was not showing
compatible bookmarks.

APIGW-3831 Fixed a certificates import failure if the truststore is on OpenShift.

Data Control Tower – Data Control Tower Home

Release notes – 34

3.2.10 Release 6.0.1 changes

Bug Number Description

APIGW-3460 Fixed a request timeout issue.

APIGW-3395 Fixed an issue where the refresh wizard did not update snapshots when
selecting different datasets.

3.2.11 Release 6.0.0 changes

Bug Number Description

APIGW-3223 Fixed an issue where DCT failed to get info from detached dSources.

3.2.12 Release 5.0.3 changes

Bug Number Description

APIGW-3344 Fixed an issue causing provision failure from RAC dSource to non-RAC target.

3.2.13 Release 5.0.2 changes

Bug Number Description

APIGW-2979 VDB refresh will no longer fail if the refresh target name is not unique.

APIGW-2981 Fixed an issue where all the Compliance jobs and source jobs on the engine
will be deleted when a Compliance engine is unregistered.

Data Control Tower – Data Control Tower Home

Release notes – 35

3.2.14 Release 5.0.1 changes

Bug Number Description

APIGW-2463 The default docker-compose.yaml file is now provided with log size and
rotation configured for all containers.

APIGW-2735 Fixed an issue where DCT migration failed with "could not create unique index
environments_host_pkey".

APIGW-2828 Helm chart now allows cronjob resource limits to be set via the values.yaml.

3.2.15 Release 3.0.0 changes

Bug Number Description

APIGW-1785 Fixed an issue where Nginx sometimes failed to start after a server restart.

3.3 Supported versions and upgrade matrix
Data Control Tower has minimum engine versions that are actively tested against to ensure optimal
interoperability. Please ensure that all connected engines meet the version requirements:

Delphix Engine Version

Continuous Data 6.0.0.1 or higher

Continuous Compliance 6.0.13.0 or higher

Users can upgrade directly between DCT versions without needing an interim step (i.e., upgrading to a
median version before upgrading to the latest).

Version Release date Can upgrade to

2.0.0 Jun 27th, 2022 2.1.0 - 13.0.x

Data Control Tower – Data Control Tower Home

Release notes – 36

Version Release date Can upgrade to

2.1.0 Sep 8th, 2022 2.2.0 - 13.0.x

2.2.0 Oct 17th, 2022 3.0.0 - 13.0.x

3.0.0 Dec 15th, 2022 4.0.0 - 13.0.x

4.0.0 Jan 19th, 2023 5.0.0 - 13.0.x

5.0.x Feb 16th, 2023 6.0.0 - 13.0.x

6.0.x Mar 29th, 2023 7.0.0 - 13.0.x

7.0.x May 9th, 2023 8.0.0 - 13.0.x

8.0.x Jun 22nd, 2023 9.0.x - 13.0.x

9.0.x Aug 1st, 2023 10.0.x - 13.0.x

10.0.x Sep 13th, 2023 11.0.x - 13.0.x

11.0.x Oct 23rd, 2023 12.0.x - 13.0.x

12.0.x Nov 30th, 2023 13.0.x

13.0.x Jan 24th, 2024 N/A

Where x represents patch version releases (i.e. 5.0.1, 5.0.2, etc.).

Data Control Tower – Data Control Tower Home

DCT overview – 37

4 DCT overview

4.1 What is Data Control Tower (DCT)?
Today’s application and data landscape is an increasingly complex ecosystem of hosting architectures, often
represented by a multi-cloud landscape coupled with an explosion of different platforms and services. This
fragmented picture of heterogeneous silos makes data governance, automation, and compliance a
herculean, if not, an impossible task.

Data Control Tower (DCT) is an enabling Delphix platform that introduces a data mesh to unify data
governance, automation, and compliance across all applications and cloud platforms.

Data governance is achieved through operational control and visibility of test data across multicloud
applications, databases, environments, and releases. DCT brings data cataloging, tagging, and data access
controls for central governance of all enterprise data, while providing the right data at the right time to
development teams.

Data automation at CI/CD speed and enterprise scale is easier and more powerful, by combining DCT with
Continuous Data. A unified API gateway, self-service automation tools, and plug-and-play DevOps
integrations streamline the initial configuration and day-to-day workflows.

DCT with Continuous Compliance provides robust data compliance in lower environments, all while reducing
costs and enabling fast, quality software development.

Data Control Tower – Data Control Tower Home

Getting started – 38

5 Getting started

5.1 Planning your deployment
Data Control Tower (DCT) represents a Delphix-wide control plane. It simultaneously powers data
governance, automation, and compliance workflows to enable the efficient operation of a broad, complex
Delphix deployment at scale. In order to deliver scalability, service-level performance tuning, and robust
resiliency, DCT leverages container technology to deliver a bespoke experience for administrative teams
based on their own internal guidelines.

5.2 Container platform support
Data Control Tower (DCT) supports the most popular distributions of Kubernetes and Openshift. If you do not
see your distribution or platform of choice, please reach out to your account team for more details.

5.2.1 Kubernetes

DCT currently supports all popular deployment models of Kubernetes as long as the service runs a minimum
of Kubernetes 1.25 and above. This includes Amazon Elastic Kubernetes Service (Amazon EKS), Azure
Kubernetes Service (AKS), and beyond.

5.2.2 OpenShift

DCT also supports all popular deployment models of Openshift as long as the service runs a minimum
version of 4.12 or above. This includes Red Hat OpenShift on IBM Cloud and any other cloud provider’s
service.

5.2.3 Docker Compose

DCT supports Docker Compose but only recommends using this platform for testing/non-production
purposes due to the inherent limitations to deployment scalability. Note - DCT has documentation on
migrating deployments from Docker Compose to Kubernetes and Openshift.

Before starting a DCT deployment, please contact your enterprise IT organization to determine
what container platforms, configurations, and policies apply for container-hosted applications. It
is helpful to include a container administrator as part of the DCT install process.

Data Control Tower – Data Control Tower Home

Getting started – 39

5.3 Data Control Tower deployment architecture
Whether an organization wants to deploy a Data Control Tower (DCT) per business unit (organizational silos),
per network (datacenter-specific DCT), or globally (the most common option), DCT can adapt to many
deployment scenarios.

DCT-based communication is lightweight, requiring simple commands or a small telemetry payload to
facilitate most workflows. The below graphic demonstrates this style of communication:

DCT simply logs into the engines as a user would and leverages engine APIs to perform commands or
extract metadata.

5.4 Plan your tagging strategy
DCT tags serve as the Delphix-wide business metadata system. These Key:Value pairs can be applied to any
object and used for search and filter in virtually every DCT workflow, from automation to administration, all
the way to access control.

Delphix recommends to deploy a single, global DCT for all Delphix Engines, for the purposes of
achieving a single control plane and data governance solution.

DCT requires HTTP/HTTPS to facilitate communication with engines and requires ports 80/443
to reach engines in other networks.

DCT does not directly interface with business-critical databases, it will only communicate with
engines to perform operations and inquire about system statuses. The Delphix Engine, which is
generally co-located with your data, does all the heavy lifting.

Data Control Tower – Data Control Tower Home

Getting started – 40

Some examples of popular tagging strategies:

Theme Sub-topics Tag (Key:Value) example

Owner Application, Business, Project,
Team (scrum, QA,…)

(Owner: Finance App), (Owner:
AppTeam Alpha), (Owner: John
Doe), …

Application (Application: Alpha)

Environment (Environment: Non Production)

Location Data Center, Region, Name,
Cloud

(Geo: West Coast), (Data Center:
Azure WC), …

In addition to designing which tags to implement, please consider who will have access to creating tags (i.e.
developer vs admin-only, etc.), which will impact how teams are able to collaborate with one another.

Also, Delphix recommends that the DCT administrative team creates Delphix-wide documentation on these
tagging standards to reduce the risk of deviation.

5.5 Plan your Access Control strategy
DCT implements a model found in other types of software called Attribute Based Access Control (ABAC).
This model is incredibly flexible, but requires detailed configurations to perfect your use cases. In DCT’s
model, there are four entity types (defined below). Familiarize with each entity, as they are the foundational
blocks of DCT’s ABAC model.

Entity Description Managed by

Accounts
(aka Users)

A single or shared user who can
authenticate with DCT (UI or API).

Create manually or via Identity
Provider (IdP), such as SSO or LDAP.
Accounts are independent of Delphix
Engines.

It is paramount to develop a tagging strategy prior to deployment in order to develop a scalable
metadata solution.

Data Control Tower – Data Control Tower Home

Getting started – 41

•
•

Access Groups A collection of accounts that share
one or more characteristics, such as a
Team or Permission set. Equivalent to
an Active Directory group.

Manually created. Populated manually
or via the login_groups tag.

Roles and
Permissions

The collection of read, write, and
delete permissions forms a reusable,
named role.

Some roles are provided out of the
box, but Admins can build their own
from the available permissions.
Individual permissions are immutable.

Objects Units, such as VDBs, Bookmarks, and
Environments, that are managed
across the Delphix Platform.

Automatically identified by DCT from
the connected engines. Assigned to
Roles via various models. The CD and
CC Engines supply these objects.

Each entity is linked to another through manual or automated assignment. A manual (or direct) assignment
is a good approach for early implementations, however, that can be challenging to maintain as teams grow.
As an alternative, tagging is recommended to perform automatic assignments based on your custom
configuration. The below diagram shows how each entity is linked together. The directions below start with
Accounts creation to Access Groups with Role assignments, and finish with Object mappings.

Understanding your team structure is imperative to identify the best access model. Usually, organizations
have existing groupings defined in their Identify Provider (IdP). These groups are typically organized in one of
two ways:

A team dedicated towards a central goal (such as a Product Development team).
A group of individuals with similar permissions (such as Security Administrators).

Data Control Tower – Data Control Tower Home

10 https://en.wikipedia.org/wiki/Principle_of_least_privilege

Getting started – 42

Understanding the purpose of each group should be a guide in how the Roles and Permissions are designed.
For example, the Alpha product development team might have full permission to manage existing VDBs and
create new bookmarks for their team’s “Alpha” objects. On the other hand, Security Admins might have
sweeping read and disable access across the entire platform to ensure compliancy. Iterating through each
Access Group and designing custom, but re-useable roles, based on the Principle of Least Privilege10, will
produce a streamlined rollout.

https://en.wikipedia.org/wiki/Principle_of_least_privilege
https://en.wikipedia.org/wiki/Principle_of_least_privilege

Data Control Tower – Data Control Tower Home

Deployment – 43

6 Deployment
The articles in this section will explain all of the required steps to deploy DCT on your container platform of
choice.

Data Control Tower is a container-based architecture that is currently certified with Kubernetes and
OpenShift to align with common enterprise container standards. The DCT architecture is comprised of
multiple micro-services that are each run on individual pods. This lends DCT to be a highly flexible
deployment by enabling customers and IT organizations to enact their own backup, scaling, and resiliency
standards associated with hosting container-based applications. Below is an architectural diagram of all the
services that make up DCT, as well as the persistent storage for maintaining relationship metadata.

DCT is multi-cloud enabled, which means that a single DCT instance can be deployed to orchestrate (via
HTTPS) Continuous Data and Continuous Compliance workloads with Delphix Engines located in other
networks. Alternatively, DCT can be localized to engines located within a network. DCT is a lightweight
management application, which means that it does not require a highly performant connection to complete
its work, and can serve as a central management layer for Delphix Engines globally.

Data Control Tower – Data Control Tower Home

Deployment – 44

•
•
•
•
•

•
•

6.1 Kubernetes
Installation and setup for Kubernetes (see page 44)

Ingress setup (see page 51)

Bootstrapping API keys (see page 55)

DCT logs for Kubernetes (see page 58)

Admin topics (see page 58)

6.1.1 Installation and setup for Kubernetes

6.1.1.1 Hardware requirements

The hardware requirements for Data Control Tower (DCT) on Kubernetes are listed below. In addition to
these requirements, inbound port 443 must be open for API clients, and outbound port 443 to engines. This
is the minimum total resource request for the Kubernetes deployment of DCT. Individual service-level
resource requests are contained in values.yaml file and can be overridden during deployment.

CPU: 4-Core
CPU Architecture: x86_64

Before getting started, Delphix recommends engaging your Kubernetes Admin for deployment
guidance on available Kubernetes deployment platforms (AKS, EKS, etc.). Configurations like
node sizing and persistent volume settings will need to be determined.

Data Control Tower – Data Control Tower Home

Deployment – 45

•
•
•

Memory: 16GB
Storage: 50GB
Port: 443

The recommended minimum 50 GB of storage is shared across the Kubernetes cluster (i.e. hosts). All pods
and/or services use this storage for mounted volumes and other utilities, including image storage.

In a single node cluster, if shared volumes are not externalized, the host requires the full 50 GB of storage. If
the persistent volume is mounted externally, the host requires 38 GB of storage, since the default storage
required by the database (10 GB), gateway (1 GB) and masking (1 GB) draws from the external storage. The
default storage configuration for the database and gateway can be modified in values.yaml.

dataBookmarks:
 resources:
 requests:
 memory: "256Mi"
 cpu: "100m"
 limits:
 memory: "512Mi"
 cpu: "200m"
dataLibrary:
 resources:
 requests:
 memory: "256Mi"
 cpu: "100m"
 limits:
 memory: "512Mi"
 cpu: "200m"
database:
 resources:
 requests:
 memory: "256Mi"
 cpu: "200m"
 limits:
 memory: "1024Mi"
 cpu: "1500m"
gateway:
 resources:
 requests:
 memory: "512Mi"

Many users may have default container settings as part of their Kubernetes or OpenShift
infrastructure management. It is paramount to compare those default settings with the
recommended minimum performance specifications (please engage your container
infrastructure team to verify). If those default setting are lower, please update them to the
minimum or higher.

For users who need to have limits set, you can start with the following sample configuration.

Data Control Tower – Data Control Tower Home

11 https://dlpx-helm-dct.s3.amazonaws.com/

Deployment – 46

•
•

 cpu: "1"
 limits:
 memory: "1024Mi"
 cpu: "1"
graphql:
 resources:
 requests:
 memory: "256Mi"
 cpu: "100m"
 limits:
 memory: "512Mi"
 cpu: "200m"
jobs:
 resources:
 requests:
 memory: "256Mi"
 cpu: "200m"
 limits:
 memory: "512Mi"
 cpu: "400m"
jobsCleaner:
 resources:
 requests:
 memory: "256Mi"
 cpu: "200m"
 limits:
 memory: "512Mi"
 cpu: "400m"
masking:
 resources:
 requests:
 memory: "512Mi"
 cpu: "500m"
 limits:
 memory: "1024Mi"
 cpu: "500m"

6.1.1.2 Kubernetes overview

Data Control Tower can be deployed in a matter of minutes, once a Kubernetes cluster has been identified
and deployment details have been aligned with your Kubernetes administrator. The installation consists of
three components:

Kubernetes cluster: The identified infrastructure to which DCT will be deployed.
HELM: This deploys DCT as a Kubernetes application by referencing HELM charts (.yaml files) that
make up the DCT install either by an external helm repository (https://dlpx-helm-
dct.s3.amazonaws.com11, this is the quickest path to installing DCT, as it largely automated) or via

https://dlpx-helm-dct.s3.amazonaws.com/
https://dlpx-helm-dct.s3.amazonaws.com/

Data Control Tower – Data Control Tower Home

12 http://download.delphix.com
13 https://helm.sh/docs/intro/install/

Deployment – 47

•

local install (this is accomplished by downloading the helm charts directly via the DCT .tar file on
download.delphix.com12).
kubectl : Is a command line tool that enables administrative communication with the deployed

pods (most useful post-deployment or after an upgrade).

6.1.1.3 Installation requirements (Kubernetes)

DCT requires a running Kubernetes cluster; This could be an on-premises cluster, Azure AKS or AWS EKS
cluster. DCT also requires a kubectl command line tool to interact with Kubernetes cluster and HELM for
deployment on to the cluster.

Requirement DCT recommended version Comments

Kubernetes Cluster 1.25 or above

HELM 3.9.0 or above Install HELM as the package manager using
the HELM installation13 article.

kubectl 1.25.0 or above HELM will internally refer to the kubeconfig file
to connect to the Kubernetes cluster. The
default kubeconfig file is present at location:
~/.kube/config

If the kubeconfig file needs to be overridden
while running HELM commands, set the
KUBECONFIG environment variable to the
location of the kubeconfig file.
To install kubectl follow the instructions at
https://kubernetes.io/docs/tasks/tools/ .

6.1.1.4 Installing DCT

Add the DCT HELM repo with the following, which will link the DCT HELM repo to the local client HELM repo:

helm repo add dct-services https://dlpx-helm-dct.s3.amazonaws.com

Update the added repos with the following, which will update the local HELM charts metadata (index.yaml).

helm repo update

http://download.delphix.com
https://helm.sh/docs/intro/install/
http://download.delphix.com
https://helm.sh/docs/intro/install/
https://kubernetes.io/docs/tasks/tools/

Data Control Tower – Data Control Tower Home

14 https://download.delphix.com/folder/1144/Delphix%20Product%20Releases/DCT

Deployment – 48

•
•

•

•

Pull the helm charts with the following, which is used to download the .tgz file.

helm pull dct-services/delphix-dct --version x.0.0

The downloaded file is then extracted using the following command (where x.0.0 should be changed to
the version of DCT being installed):

tar -xvf delphix-dct-x.0.0.tgz

Update the following properties values.yaml which is present in the extracted folder delphix-dct .

To generate the bootstrap APIKey, set apiKeyCreate: true .
Provide image credentials to pull images from docker registry.

username: <retrieved from download.delphix.com>

password: <retrieved from download.delphix.com>

For getting the image credentials, visit the Delphix DCT Download14 page and login with your customer login
credentials. Once logged in, select the DCT Helm Repository link and accept the Terms and Conditions. Use
password from the popup screen, as shown below.

https://download.delphix.com/folder/1144/Delphix%20Product%20Releases/DCT
https://download.delphix.com/folder/1144/Delphix%20Product%20Releases/DCT

Data Control Tower – Data Control Tower Home

15 https://download.delphix.com/file/12747/delphix-dct-9.0.0.tar.gz
16 https://download.delphix.com/folder/1144/Delphix%20Product%20Releases/DCT
17 https://kubernetes.io/docs/concepts/configuration/secret/

Deployment – 49

In version 8.0.0 and above, instead of username/password, an option is available to use credentials from a
pre-existing Kubernetes Secret17. To do so, instead of providing a username/password, users must create
the Kubernetes Secret in the same namespace as the one used for DCT, and reference the registryKey as
follows:

imageCredentials:
 # registry to pull docker images from.
 registry: dct.download.delphix.com/delphix-dct
 # username to login to docker registry. Do not set if registryKey is set.
 username:
 # password to login to docker registry. Do not set if registryKey is set.
 password:
 # Name of an existing docker registry key to use to pull images.
 registryKey: <insert-secret-name-here>

After updating the values.yaml, install it using the following command:

•

•

•

•

•

•

•

•

•

•

•

OFFLINE MODE

If you do not have direct access to Delphix HELM and Docker repositories, download the HELM
charts and Docker images packages as delphix-dct-x.0.0.tar.gz15, which is uploaded on the
download site16.

Extract the downloaded .tgz file to get the HELM chart and Docker images.

Load extracted Docker images using following:

for image in *tar; do sudo docker load --input $image; done

RE-tag and push Docker images in your local repository, tag images in the following format:

e.g., docker tag registry.delphix.com/delphix-dct:app-x.0.0

<local registry url>:app-x.0.0

Note: Re-tag all remaining DCT images in the same format.

Update values.yaml for registry name and image credentials:

registry: <local registry url>

username: <local registry username>

password: <local registry password>

Deploy.

https://download.delphix.com/file/12747/delphix-dct-9.0.0.tar.gz
https://download.delphix.com/folder/1144/Delphix%20Product%20Releases/DCT
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://download.delphix.com/file/12747/delphix-dct-9.0.0.tar.gz
https://download.delphix.com/folder/1144/Delphix%20Product%20Releases/DCT

Data Control Tower – Data Control Tower Home

Deployment – 50

helm install dct-services delphix-dct

6.1.1.4.1 Sample values.yaml file

A sample values.yaml file can be downloaded below.

values.yaml

 (see page 44)

Once deployment is complete, check the status of the deployment using the following command (where
X.0.0 should be changed to the version of DCT being installed):

helm list
NAME NAMESPACE REVISION UPDATED
STATUS CHART APP VERSION
dct-services default 1 2023-01-10 19:33:41.713202 -0900
deployed delphix-dct-x.0.0 x.0.0

delphix-dct is the name of the folder which was extracted in the previous step. dct-services is
the chart name which is given for this deployment.

In the above directory structure, the values.yaml file contains the properties which are
configured above. If you want to configure additional properties in values.yaml, create a
values.yaml using the sample below. Deploy DCT using following command to use the custom
values.yaml:

helm install dct-services -f <path to edited values.yaml> <directory

path of the extracted chart>

Data Control Tower – Data Control Tower Home

18 https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.27/#ingress-v1-networking-k8s-io

Deployment – 51

6.1.2 Ingress setup

Ingress exposes HTTP and HTTPS routes from outside the cluster toDCT running within the cluster. Find out
more about Ingress from their official documentation18.

The proxy pod (which comes with DCT) runs an Nginx HTTP server which must be the only target of the
Ingress rules, redirecting all external traffic to it. Out of the box, the pod accepts requests over HTTPs on port
443, using a self-signed certificate.

6.1.2.1 Expose proxy HTTP port (80) for non-encrypted traffic

After setting up an Ingress, TLS will be terminated by the HTTP server/load balancer/proxy implementing the
Ingress, and not DCT. First, disable the TLS (SSL) configuration of DCT itself, making it expose port 80 for
non encrypted traffic. To do so, edit the values.yaml to unset the useSSL property.

Either expose proxy on SSL port or non SSL port:

useSSL: false

Then run helm upgrade to apply the changes:

helm upgrade dct-services -f <path to edited values.yaml> <directory path of the
extracted chart>

Now, the proxy pod accepts unencrypted traffic on port 80.

Assuming an ingress controller configuration on the Kubernetes cluster is present, when
accessing DCT after the deployment, the ingress controller rule needs to be added for proxy
service, along with port 443 (if SSL is enabled) and port 80 (if SSL is disabled).

The exact steps to setup an Ingress vary by Kubernetes vendor and company policies. This
section provides non-exhaustive instructions for a basic setup, but please ask your Kubernetes
cluster administrator for guidance.

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.27/#ingress-v1-networking-k8s-io
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.27/#ingress-v1-networking-k8s-io

Data Control Tower – Data Control Tower Home

19 https://kubernetes.io/docs/concepts/services-networking/ingress-controllers
20 https://learn.microsoft.com/en-us/azure/aks/ingress-basic

Deployment – 52

6.1.2.2 Ingress controller installation and route creation

An Ingress controller19 is required to continue. Expand a section below based on your Kubernetes
environment to show the corresponding Ingress controller installation and Ingress route creation
instructions.

Microsoft Azure AKS

6.1.2.2.1 Ingress controller installation

Please follow these instructions20 to install an Nginx Ingress controller. A simple setup can be installed with
these commands:

NAMESPACE=ingress-basic
helm repo add ingress-nginx https://kubernetes.github.io/ingress-nginx
helm repo update
helm install ingress-nginx ingress-nginx/ingress-nginx \
 --create-namespace \
 --namespace $NAMESPACE \
 --set controller.service.annotations."service\.beta\.kubernetes\.io/azure-load-
balancer-health-probe-request-path"=/healthz

6.1.2.2.2 Ingress route creation

Create a file named ingress.yaml.

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: dct-ingress
 annotations:
 nginx.ingress.kubernetes.io/ssl-redirect: "true"
spec:
 ingressClassName: nginx
 rules:
 - http:
 paths:
 - path: /
 pathType: Prefix
 backend:
 service:
 name: proxy
 port:
 number: 80

https://kubernetes.io/docs/concepts/services-networking/ingress-controllers
https://learn.microsoft.com/en-us/azure/aks/ingress-basic
https://kubernetes.io/docs/concepts/services-networking/ingress-controllers
https://learn.microsoft.com/en-us/azure/aks/ingress-basic

Data Control Tower – Data Control Tower Home

21 https://learn.microsoft.com/en-us/azure/aks/ingress-tls
22 https://docs.aws.amazon.com/eks/latest/userguide/alb-ingress.html
23 https://docs.aws.amazon.com/eks/latest/userguide/aws-load-balancer-controller.html

Deployment – 53

Apply the Ingress resource with kubectl apply :

kubectl apply -f ingress.yaml --namespace=ingress-basic

To configure TLS, see Use TLS with an Ingress controller21.

Amazon AWS EKS

6.1.2.2.3 Ingress controller installation

Please follow these instructions22 to install an AWS load balancer controller23 (An Ingress controller which
configures AWS application load balancers).

6.1.2.2.4 Ingress route creation

Create a file named ingress.yaml, replacing the value of certificate-arn in the example below with the
ARN of the certificate you want to use for the HTTPs endpoint.

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: dct-ingress
 annotations:
 kubernetes.io/ingress.class: alb
 alb.ingress.kubernetes.io/scheme: internal
 alb.ingress.kubernetes.io/target-type: ip
 alb.ingress.kubernetes.io/ssl-redirect: '443'
 alb.ingress.kubernetes.io/listen-ports: '[{"HTTP": 80}, {"HTTPS":443}]'
 alb.ingress.kubernetes.io/certificate-arn: arn:aws:acm:us-west-2:xxxxx:certificat
e/xxxxxxx
spec:
 rules:
 - http:
 paths:
 - path: /
 pathType: Prefix
 backend:
 service:
 name: proxy
 port:
 number: 80

https://learn.microsoft.com/en-us/azure/aks/ingress-tls
https://docs.aws.amazon.com/eks/latest/userguide/alb-ingress.html
https://docs.aws.amazon.com/eks/latest/userguide/aws-load-balancer-controller.html
https://learn.microsoft.com/en-us/azure/aks/ingress-tls
https://docs.aws.amazon.com/eks/latest/userguide/alb-ingress.html
https://docs.aws.amazon.com/eks/latest/userguide/aws-load-balancer-controller.html

Data Control Tower – Data Control Tower Home

24 https://kubernetes-sigs.github.io/aws-load-balancer-controller/v2.5/guide/ingress/cert_discovery/
25 https://aws.amazon.com/certificate-manager/
26 https://docs.aws.amazon.com/eks/latest/userguide/alb-ingress.html

Deployment – 54

Alternatively, you may use certificate discovery24 to have the ALB select a matching certificate from AWS
Certificate manager25 based on the host name.

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: dct-ingress
 annotations:
 kubernetes.io/ingress.class: alb
 alb.ingress.kubernetes.io/scheme: internal
 alb.ingress.kubernetes.io/target-type: ip
 alb.ingress.kubernetes.io/ssl-redirect: '443'
 alb.ingress.kubernetes.io/listen-ports: '[{"HTTP": 80}, {"HTTPS":443}]'
spec:
 tls:
 - hosts:
 - www.example.com
 rules:
 - http:
 paths:
 - path: /
 pathType: Prefix
 backend:
 service:
 name: proxy
 port:
 number: 80

Apply the Ingress resource with kubectl apply :

kubectl apply -f ingress.yaml --namespace=ingress-basic

This creates an application load balancer26, which forwards all traffic to DCT.

Other

6.1.2.2.5 Ingress controller installation

For self-hosted Kubernetes, you can install an Nginx Ingress controller with:

helm upgrade --install ingress-nginx ingress-nginx --repo https://
kubernetes.github.io/ingress-nginx --namespace ingress-nginx --create-namespace

https://kubernetes-sigs.github.io/aws-load-balancer-controller/v2.5/guide/ingress/cert_discovery/
https://aws.amazon.com/certificate-manager/
https://docs.aws.amazon.com/eks/latest/userguide/alb-ingress.html
https://kubernetes-sigs.github.io/aws-load-balancer-controller/v2.5/guide/ingress/cert_discovery/
https://aws.amazon.com/certificate-manager/
https://docs.aws.amazon.com/eks/latest/userguide/alb-ingress.html

Data Control Tower – Data Control Tower Home

27 https://kubernetes.github.io/ingress-nginx/deploy/
28 https://kubernetes.github.io/ingress-nginx/user-guide/tls/
29 https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Authorization

Deployment – 55

Reference environment specific instructions27 for a complete list of supported platforms and specific
instructions.

6.1.2.2.6 Ingress route creation

Create a file name ingress.yaml.

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: dct-ingress
 annotations:
 nginx.ingress.kubernetes.io/ssl-redirect: "true"
spec:
 ingressClassName: nginx
 rules:
 - http:
 paths:
 - path: /
 pathType: Prefix
 backend:
 service:
 name: proxy
 port:
 number: 80

Apply the Ingress resource with kubectl apply :

kubectl apply -f ingress.yaml --namespace=ingress-basic

Review the Ingress-Nginx instructions28 to setup TLS.

6.1.3 Bootstrapping API keys

API keys are the default method to authenticate with DCT. This is done by including the key in the HTTP
Authorization request header29 with type apk .

API keys are long-live tokens and as a result, do not automatically expire in the future. They
remain valid until they are deleted or destroyed from DCT.

https://kubernetes.github.io/ingress-nginx/deploy/
https://kubernetes.github.io/ingress-nginx/user-guide/tls/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Authorization
https://kubernetes.github.io/ingress-nginx/deploy/
https://kubernetes.github.io/ingress-nginx/user-guide/tls/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Authorization

Data Control Tower – Data Control Tower Home

Deployment – 56

A cURL example using an example key of
1.0p9PMkZO4Hgy0ezwjhX0Fi4lEKrD4pflejgqjd0pfKtywlSWR9G0fIaWajuKcBT3 would appear as:

curl --header 'Authorization: apk
1.0p9PMkZO4Hgy0ezwjhX0Fi4lEKrD4pflejgqjd0pfKtywlSWR9G0fIaWajuKcBT3'

cURL (like web browsers and other HTTP clients) will not connect to DCT over HTTPS unless a valid TLS
certificate has been configured for the Nginx server. If this configuration step (see page 116) has not been
performed yet and the risk is comprehended, you may disable the check in the HTTP client. For instance, this
can done with cURL using the --insecure flag.

6.1.3.1 Bootstrap first API key

There is a special process to bootstrap the creation of the first API key. This first API key should only be used
to create another key and then promptly deleted, since the bootstrap API will appear in the logs. This process
can be repeated as many times as needed, for example, in a case where existing API keys are lost or have
been deleted.

Once the application is started, edit the values.yaml file and modify the following lines, to set the
apiKeyCreate to the string value true . Toggle this value to create/seed bootstrap API key:

apiKeyCreate: true

Upgrade DCT with:

helm upgrade dct-services <directory path of the extracted chart>

If the values.yaml file needs to be overridden from outside, then use:

helm upgrade dct-services -f <path_to_values.yaml> <directory path of the extracted
chart>

You will see the following output in the logs for the gateway pod (the key will be different from this example):

NEWLY GENERATED API KEY: 1.0p9PMkZO4Hgy0ezwjhX0Fi4lEKrD4pflejgqjd0pfKtywlSWR9G0fIaWaj
uKcBT3

Logs for a gateway pod can be accessed using:

The cURL version must be 7.43 or higher.

Data Control Tower – Data Control Tower Home

Deployment – 57

kubectl logs <gateway-pod-name> -n dct-services

gateway-pod-name will be of the format gateway-xxx and can be found using the following
command:

kubectl get pods -n dct-services

Copy the API Key, it can now be used to authenticate with DCT. Remember that the API Key value must be
prefixed with APK. An example cURL command with the above API Key appears as follows:

curl --header 'Authorization: apk
1.0p9PMkZO4Hgy0ezwjhX0Fi4lEKrD4pflejgqjd0pfKtywlSWR9G0fIaWajuKcBT3'

Edit the values.yaml file to set the apiKeyCreate environment variable value back to false and
upgrade DCT again with:

helm upgrade dct-services <directory path of the extracted chart>

If the values.yaml file needs to be overridden from outside, then use:

helm upgrade dct-services -f <path_to_values.yaml> <directory path of the extracted
chart>

6.1.3.1.1 Create and manage API Keys

The initial API key created should be used to create a new admin secure key. This is done by creating a new
Account entity and setting the generate_api_key. The "username" attribute should be the desired name to
uniquely identify the account.

curl --location --request POST 'https://<hostname>/v2/management/accounts' \
--header 'Content-Type: application/json' \
--header 'Accept: application/json' \
--header 'Authorization: apk
1.0p9PMkZO4Hgy0ezwjhX0Fi4lEKrD4pflejgqjd0pfKtywlSWR9G0fIaWajuKcBT3' \
--data-raw '{
 "username": "secure-key",
 "generate_api_key": true,
 "is_admin": true

If the cURL version is below 7.43, replace --data-raw option with --data .

Data Control Tower – Data Control Tower Home

Deployment – 58

•

}'

A response should be received similar to the lines below:

{
 "id": 2,
 "token": "2.vCfC0MnpySYZLshuxap2aZ7xqBKAnQvV7hFnobe7xuNlHS9AF2NQnV9XXw4UyET6"
 "username":"secure-key"
}

Now that the new and secure API key is created, the old one must be deleted for security reasons since the
key appeared in the logs. To do this make the following request:

curl --location --request DELETE 'https://<hostname>/v2/management/api-clients/<id>'
 \
--header 'Content-Type: application/json' \
--header 'Accept: application/json' \
--header 'Authorization: apk
2.vCfC0MnpySYZLshuxap2aZ7xqBKAnQvV7hFnobe7xuNlHS9AF2NQnV9XXw4UyET6'

The id referenced above is the numeric id of the Account. It is the integer before the period in the token.
For example, the id of
1.0p9PMkZO4Hgy0ezwjhX0Fi4lEKrD4pflejgqjd0pfKtywlSWR9G0fIaWajuKcBT3 is 1.

Finally, to list all of the current Accounts, make the following request:

curl --location --request GET 'https://<hostname>/v2/management/accounts/' \
--header 'Content-Type: application/json' \
--header 'Accept: application/json' \
--header 'Authorization: apk <your API key>'

6.1.4 DCT logs for Kubernetes

All DCT containers log to stdout and stderr so that their logs are processed by Kubernetes. To view container
level logs running on the Kubernetes cluster use:

kubectl logs <pod_name> -n dct-services

Log aggregators can be configured to read from stdout and stderr for all of the pods as per the
requirements.

6.1.5 Admin topics

Deployment upgrade for Kubernetes (see page 59)

Data Control Tower – Data Control Tower Home

Deployment – 59

• Factory reset DCT for Kubernetes (see page 61)

6.1.5.1 Deployment upgrade for Kubernetes

This page covers the upgrade process for DCT deployments on Kubernetes.

Create a new folder called dct-x.0.0, where x.0.0 should be changed to the version of DCT being installed
(e.g. if on 5.0.2, it would be 6.0.0).

mkdir dct-x.0.0

Update the added repos with the following, which will update the local HELM charts metadata (index.yaml).

helm repo update

Pull the HELM charts with the following:

cd dct-x.0.0
helm pull dct-services/delphix-dct --version x.0.0

The downloaded file is then extracted using the following command (where x.0.0 should be changed to
the version of DCT being installed):

Starting from DCT 12.0.0 we have introduced one new service(container) named Masking.

Memory and CPU requirement for this newly added service(container) is 512Mi and 500m
respectively.

This container creates a new persistent volume of 1GB dynamically, if you are using pre-existing
static persistent volumes for other existing pods(i.e. gateway and database) then similar to
these pods, please create a new persistent volume claim for masking pod too and update the
maskingPvcName property in the values.yaml with the name of static persistent volume

claim.

For customising masking service resources(request and limits) and properties please refer
values.yaml file in the helm chart of current release.

This command will download a file named delphix-dct-x.0.0.tgz in the folder dct-x.0.0.

Data Control Tower – Data Control Tower Home

30 https://download.delphix.com/

Deployment – 60

•

tar -xvf delphix-dct-x.0.0.tgz

Which will extract into the following directory structure:

delphix-dct
 |- values.yaml
 |- README.md
 |- Chart.yaml
 |- templates
 |-<all templates files>

Create a new values.yaml inside to the dct-x.0.0 folder (e.g. parallel to delphix-dct folder), use sample
values.yaml given below. Copy the configured properties from previous version to this newly created
values.yaml.

values.yaml

 (see page 59)

Update the username and password in values.yaml. It can be obtained from https://download.delphix.com30.
Here are some notes in regards to this step in the process:

This username and password update in values.yaml is only required if the user using DCT provided a
Docker Registry directly in the deployment (i.e. values.yaml).

This values.yaml file should only contain the modified values from the previous version of
deployment and not the entire values.yaml file as it is.

https://download.delphix.com/
https://download.delphix.com/

Data Control Tower – Data Control Tower Home

31 https://download.delphix.com/file/12747/delphix-dct-9.0.0.tar.gz
32 https://download.delphix.com/folder/1144/Delphix%20Product%20Releases/DCT

Deployment – 61

• Run the HELM upgrade command:

helm upgrade -f values.yaml dct-services delphix-dct

6.1.5.2 Factory reset DCT for Kubernetes

To clean DCT installation run following command:

helm delete dct-services

Username and password update is required only if username AWS and temporary password is
used.

•

•

•

•

•

•

•

•

•

•

OFFLINE MODE

If you do not have direct access to Delphix HELM and Docker repositories, download the HELM
charts and Docker images packages as delphix-dct-x.0.0.tar.gz31, which is uploaded on the
download site32.

Extract the downloaded .tgz file to get the HELM chart and Docker images.

Load extracted Docker images using following:

for image in *tar; do sudo docker load --input $image; done

RE-tag and push Docker images in your local repository, tag images in the following format:

e.g., docker tag registry.delphix.com/delphix-dct:app-x.0.0

<local registry url>:app-x.0.0

Note: Re-tag all remaining DCT images in the same format.

Update values.yaml for registry name and image credentials:

registry: <local registry url>

username: <local registry username>

password: <local registry password>

https://download.delphix.com/file/12747/delphix-dct-9.0.0.tar.gz
https://download.delphix.com/folder/1144/Delphix%20Product%20Releases/DCT
https://download.delphix.com/file/12747/delphix-dct-9.0.0.tar.gz
https://download.delphix.com/folder/1144/Delphix%20Product%20Releases/DCT

Data Control Tower – Data Control Tower Home

Deployment – 62

•
•
•
•

•
•
•
•
•

6.2 OpenShift
Installation and setup for OpenShift (see page 62)

OpenShift authentication (see page 71)

DCT logs for OpenShift (see page 72)

Admin topics for OpenShift (see page 72)

6.2.1 Installation and setup for OpenShift

6.2.1.1 Hardware requirements

The hardware requirements for Data Control Tower to deploy on OCP are listed below. In addition to these
requirements, inbound port 443 or 80 must be open for API clients. This is the minimum total resource
requirement for the deployment.

CPU: 4-Core
CPU Architecture: x86_64
Memory: 16GB
Storage: 50GB
Port: 443

The recommended minimum 50 GB of storage is shared across the Kubernetes cluster (i.e. hosts). All pods
and/or services use this storage for mounted volumes and other utilities, including image storage.

In a single node cluster, if shared volumes are not externalized, the host requires the full 50 GB of storage. If
the persistent volume is mounted externally, the host requires 38 GB of storage, since the default storage
required by the database (10 GB), gateway (1 GB) and masking (1 GB) draws from the external storage. The
default storage configuration for the database and gateway can be modified in values.yaml.

dataBookmarks:

This process will delete services pod and database both.

Many users may have default container settings as part of their Kubernetes or OpenShift
infrastructure management. It is paramount to compare those default settings with the
recommended minimum performance specifications (please engage your container
infrastructure team to verify). If those default setting are lower, please update them to the
minimum or higher.

For users who need to have limits set, you can start with the following sample configuration.

Data Control Tower – Data Control Tower Home

Deployment – 63

 resources:
 requests:
 memory: "256Mi"
 cpu: "100m"
 limits:
 memory: "512Mi"
 cpu: "200m"
dataLibrary:
 resources:
 requests:
 memory: "256Mi"
 cpu: "100m"
 limits:
 memory: "512Mi"
 cpu: "200m"
database:
 resources:
 requests:
 memory: "256Mi"
 cpu: "200m"
 limits:
 memory: "1024Mi"
 cpu: "1500m"
gateway:
 resources:
 requests:
 memory: "512Mi"
 cpu: "1"
 limits:
 memory: "1024Mi"
 cpu: "1"
graphql:
 resources:
 requests:
 memory: "256Mi"
 cpu: "100m"
 limits:
 memory: "512Mi"
 cpu: "200m"
jobs:
 resources:
 requests:
 memory: "256Mi"
 cpu: "200m"
 limits:
 memory: "512Mi"
 cpu: "400m"
jobsCleaner:
 resources:
 requests:
 memory: "256Mi"
 cpu: "200m"

Data Control Tower – Data Control Tower Home

Deployment – 64

 limits:
 memory: "512Mi"
 cpu: "400m"
masking:
 resources:
 requests:
 memory: "512Mi"
 cpu: "500m"
 limits:
 memory: "1024Mi"
 cpu: "500m"

6.2.1.2 Installation requirements (OpenShift)

DCT requires a running OpenShift cluster to run, oc command line tool to interact with OpenShift cluster,
and HELM for deployment on to the cluster.

Requirement DCT Recommended Version Comments

OpenShift Cluster 4.12 or above

HELM 3.9.0 or above HELM installation should support
HELM v3. More information on
HELM can be found at https://
helm.sh/docs/.
To install HELM, follow the
installation instructions at
https://helm.sh/docs/intro/
install/.

oc 4.11.3 or above To install oc follow the
instructions at https://
docs.openshift.com/container-
platform/4.8/cli_reference/
openshift_cli/getting-started-
cli.html.

If an intermediate HELM repository is to be used instead of the default Delphix HELM repository,
then the repository URL, username, and password to access this repository needs to be
configured in the values.yaml file under imageCredentials section.

https://helm.sh/docs/
https://helm.sh/docs/intro/install/
https://docs.openshift.com/container-platform/4.8/cli_reference/openshift_cli/getting-started-cli.html

Data Control Tower – Data Control Tower Home

Deployment – 65

6.2.1.3 Installation process

6.2.1.3.1 Jumpbox setup

6.2.1.3.1.1 OC login

Run the OC login command to authenticate OpenShift CLI with the server:

oc login https://openshift1.example.com --token=<<token>>

6.2.1.3.1.2 Verify KubeConfig

HELM will use the configuration file inside the $HOME/.kube/ folder to deploy artifacts on an OpenShift
cluster.

Be sure the config file has the cluster context added, and the current-context is set to use this cluster. To
verify the context, run this command:

oc config current-context

6.2.1.3.1.3 Create a new project

Create a new project named dct-services using the command below:

oc new-project dct-services --description="DCT Deployment project" --display-name="dc
t-services"

6.2.1.3.1.4 Installing Helm

Install HELM using the following installation instructions mentioned at https://helm.sh/docs/intro/install/.

6.2.1.3.2 Deploy DCT chart

Add the DCT HELM repo with the following, which will link the DCT HELM repo to the local HELM repo:

helm repo add dct-services https://dlpx-helm-dct.s3.amazonaws.com

Update the added repos with the following, which will update the local HELM charts metadata (index.yaml):

https://helm.sh/docs/intro/install/

Data Control Tower – Data Control Tower Home

33 https://download.delphix.com/folder/1144/Delphix%20Product%20Releases/DCT

Deployment – 66

•
•

•

•

•

helm repo update

Pull the HELM charts with the following, which is used to download the .tgz file:

helm pull dct-services/delphix-dct --version x.0.0

The downloaded file is then extracted using the following command (where x.0.0 should be changed to
the version of DCT being installed):

tar -xvf delphix-dct-x.0.0.tgz

Update the following properties values.yaml which is present in the extracted folder delphix-dct .

To generate the bootstrap APIKey, set apiKeyCreate: true .
Provide image credentials to pull images from docker registry.

username: <retrieved from download.delphix.com>

password: <retrieved from download.delphix.com>

isOpenshift should be set to true .

For getting the image credentials, visit the Delphix DCT Download33 page and login with your user login
credentials. Once logged in, select the DCT Helm Repository link and accept the Terms and Conditions. Use
password from the popup screen, as shown below.

https://download.delphix.com/folder/1144/Delphix%20Product%20Releases/DCT
https://download.delphix.com/folder/1144/Delphix%20Product%20Releases/DCT

Data Control Tower – Data Control Tower Home

34 https://download.delphix.com/file/12747/delphix-dct-9.0.0.tar.gz
35 https://download.delphix.com/folder/1144/Delphix%20Product%20Releases/DCT

Deployment – 67

6.2.1.3.2.1 Find and update fsGroup in values.yaml file

The fsGroup field is used to specify a supplementary group ID. All processes of the container, the owner of
the volume, and any files created on the volume are also part of this supplementary group ID.

For OpenShift deployment, this value need to be specified in the values.yaml file.

Find the allowed supplementary group range:

oc get project dct-services -o yaml

A response should appear as follows:

apiVersion: project.openshift.io/v1
kind: Project
metadata:

•

•

•

•

•

•

•

•

•

•

•

OFFLINE MODE

If you do not have direct access to Delphix HELM and Docker repositories, download the HELM
charts and Docker image packages as delphix-dct-x.0.0.tar.gz34, which is uploaded on the
download site35.

Extract the downloaded .tgz file to get the HELM chart and Docker images.

Load extracted Docker images using the following command:

For an image in *tar, use sudo docker load --input $image; done .

RE-tag and push Docker images in your local repository, tag images in the following format:

e.g. docker tag registry.delphix.com/delphix-dct:app-x.0.0

<local registry url>:app-x.0.0 .

Note: Re-tag all remaining DCT images in the same format:

Update values.yaml for registry name and image credentials:

registry: <local registry url>

username: <local registry username>

password: <local registry password>

Deploy.

https://download.delphix.com/file/12747/delphix-dct-9.0.0.tar.gz
https://download.delphix.com/folder/1144/Delphix%20Product%20Releases/DCT
https://download.delphix.com/file/12747/delphix-dct-9.0.0.tar.gz
https://download.delphix.com/folder/1144/Delphix%20Product%20Releases/DCT

Data Control Tower – Data Control Tower Home

Deployment – 68

 annotations:
 openshift.io/description: ""
 openshift.io/display-name: ""
 openshift.io/requester: cluster-admin
 openshift.io/sa.scc.mcs: s0:c32,c4
 openshift.io/sa.scc.supplemental-groups: 1001000000/10000
 openshift.io/sa.scc.uid-range: 1001000000/10000
 creationTimestamp: "2023-01-18T10:33:04Z"
 labels:
 kubernetes.io/metadata.name: dct-services
 pod-security.kubernetes.io/audit: restricted
 pod-security.kubernetes.io/audit-version: v1.24
 pod-security.kubernetes.io/warn: restricted
 pod-security.kubernetes.io/warn-version: v1.24
 name: dct-services
 resourceVersion: "99974"
 uid: ccdd5c9f-2ce5-49b4-91a7-662e0598b63b
spec:
 finalizers:
 - kubernetes
status:
 phase: Active

Copy the first value from the openshift.io/sa.scc.supplemental-groups line, before the slash
(e.g. 1001000000). Paste this value in the values.yaml file:

Define SecurityContextConstraints for the pod
podSecurityContext:
 fsGroup: 1001000000

6.2.1.3.2.2 Deploy DCT

Run the following command to deploy the DCT chart (where x.0.0 should be changed to the version of
DCT being installed):

helm install dct-services delphix-dct

delphix-dct is the name of the folder which was extracted in the previous step. dct-services
is the chart name which is given for this deployment.

In the above directory structure, the values.yaml file contains the properties which are
configured above. Deploy DCT using following command to use the custom values.yaml:

Data Control Tower – Data Control Tower Home

Deployment – 69

6.2.1.3.2.3 Verify deployment

All the images will be downloaded and then deployed. If some pods restarted at the startup, this is expected.
After some time, a total of 9 pods will be in running status and one job pod will be in completed status.

oc get pods -n dct-services

6.2.1.3.2.4 Find API key

For the very first deployment bootstrap API key will be printed in logs, please view gateway pod logs and find
for “NEWLY GENERATED API KEY”. the value is the API key.

oc logs <gateway-pod-name> -n dct-services

6.2.1.4 Configure Ingress

DCT only works with HTTPS Ingress, the UI does not support HTTP.

6.2.1.4.1 Creating route

To create a route, you can use the OpenShift console and create a new one for the DCT service.

If SSL is terminated at this route, only then should the useSSL value in values.yaml be updated to false, so
that 80 port will be exposed in proxy service and can be used to configure the route. The following
screenshot shows the route that forwards requests to 80 port of proxy service:

helm install dct-services -f <path to edited values.yaml> <directory

path of the extracted chart>

Data Control Tower – Data Control Tower Home

Deployment – 70

If SSL is not terminated at the Route level, then create a PassTrough route and use 443 port of the proxy
service, and configure the SSL certificate and key in the values.yaml file:

Data Control Tower – Data Control Tower Home

Deployment – 71

6.2.2 OpenShift authentication

6.2.2.1 Introduction

DCT uses Nginx/OpenResty as an HTTP server and a reverse proxy for the application. Using the default
configuration, all connections to DCT are over HTTPS and require the user to authenticate. There are three
supported methods for authentication; API keys, Username/Password, and OpenID Connect.

6.2.2.2 Enable OAuth2 authentication

By default APIKey authentication will be enabled and when DCT starts it will generate a new API key (see page
98) in logs if you want to enable openId connect authentication then follow below procedure:

Update the below properties in the values.yaml file and restart DCT:

Data Control Tower – Data Control Tower Home

Deployment – 72

•
•

flag to enable api_key based authentication
apiKeyEnabled: false
flag to enable OAuth2 based authentication
openIdEnabled: true
URL of the discovery endpoint as defined by the OpenId Connect Discovery
specification. This needs to be set if 'openIdEnabled' is set to true
openIdServerUrl: https://delphix.okta.com/oauth2/default/.well-known/oauth-
authorization-server
OAuth2 jwt claim name that should be used as client_id
jwtClaimForClientId: sub
OAuth2 jwt claim name that should be used as client_name
jwtClaimForClientName: sub

6.2.3 DCT logs for OpenShift

All DCT containers log to stdout and stderr, so that their logs are processed by OpenShift. To view container
level logs running on the OpenShift cluster, use this command:

oc logs <pod_name> -n dct-services

Log aggregators can be configured to read from stdout and stderr for all of the pods as per the
requirements.

6.2.4 Admin topics for OpenShift

Deployment upgrade for OpenShift (see page 72)

Factory reset DCT for OpenShift (see page 75)

6.2.4.1 Deployment upgrade for OpenShift

This page covers the upgrade process for DCT deployments on Kubernetes.

Starting from DCT 12.0.0 we have introduced one new service(container) named Masking.

Memory and CPU requirement for this newly added service(container) is 512Mi and 500m
respectively.

This container creates a new persistent volume of 1GB dynamically, if you are using pre-existing
static persistent volumes for other existing pods(i.e. gateway and database) then similar to
these pods, please create a new persistent volume claim for masking pod too and update the
maskingPvcName property in the values.yaml with the name of static persistent volume

claim.

Data Control Tower – Data Control Tower Home

Deployment – 73

Create a new folder called dct-x.0.0 where x.0.0 should be changed to the version of DCT being installed
(e.g. if on 5.0.2, it would be 6.0.0).

mkdir dct-x.0.0

Update the added repos with the following, which will update the local HELM charts metadata (index.yaml):

helm repo update

Pull the HELM charts:

cd dct-x.0.0
helm pull dct-services/delphix-dct --version x.0.0

The downloaded file is then extracted using the following command (where x.0.0 should be changed to
the version of DCT being installed):

tar -xvf delphix-dct-x.0.0.tgz

Which will extract into the following directory structure:

delphix-dct
 |- values.yaml
 |- README.md
 |- Chart.yaml
 |- templates
 |-<all templates files>

Create a new values.yaml inside to the dct-x.0.0 folder (e.g. parallel to delphix-dct folder), use sample
values.yaml given below. Copy the configured properties from previous version to this newly created
values.yaml.

For customising masking service resources(request and limits) and properties please refer
values.yaml file in the helm chart of current release.

This command will download a file named delphix-dct-x.0.0.tgz in the folder dct-x.0.0.

Data Control Tower – Data Control Tower Home

36 https://download.delphix.com/
37 https://download.delphix.com/file/12747/delphix-dct-9.0.0.tar.gz
38 https://download.delphix.com/folder/1144/Delphix%20Product%20Releases/DCT

Deployment – 74

•

values.yaml

 (see page 72)

Update the username and password in values.yaml. It can be obtained from https://download.delphix.com36.
Here are some notes in regards to this step in the process:

This username and password update in values.yaml is only required if the user using Delphix
provided a Docker Registry directly in the deployment (i.e. values.yaml).

The values.yaml file contains only modified values from the previous version of deployment.

Username and password update in values.yaml is required only if username AWS and temporary
password(12 hours expiry) is used.

•

•

•

OFFLINE MODE

If you do not have direct access to Delphix HELM and Docker repositories, download the HELM
charts and Docker images packages as delphix-dct-x.0.0.tar.gz37, which is uploaded on the
download site38.

Extract the downloaded .tgz file to get the HELM chart and Docker images.

Load extracted Docker images using following:

for image in *tar; do sudo docker load --input $image; done

https://download.delphix.com/
https://download.delphix.com/file/12747/delphix-dct-9.0.0.tar.gz
https://download.delphix.com/folder/1144/Delphix%20Product%20Releases/DCT
https://download.delphix.com/
https://download.delphix.com/file/12747/delphix-dct-9.0.0.tar.gz
https://download.delphix.com/folder/1144/Delphix%20Product%20Releases/DCT

Data Control Tower – Data Control Tower Home

Deployment – 75

• Run the HELM upgrade command:

helm upgrade -f values.yaml dct-services delphix-dct

6.2.4.2 Factory reset DCT for OpenShift

To clean DCT installation run following command:

helm delete dct-services

6.3 Docker Compose

•

•

•

•

•

•

•

•

RE-tag and push Docker images in your local repository, tag images in the following format:

e.g., docker tag registry.delphix.com/delphix-dct:app-x.0.0

<local registry url>:app-x.0.0

Note: Re-tag all remaining DCT images in the same format.

Update values.yaml for registry name and image credentials:

registry: <local registry url>

username: <local registry username>

password: <local registry password>

Deploy.

This process will delete both services pod and database.

Delphix has announced the depreciation of support for Docker Compose with DCT version
13.0.0. The January 2024 release starts a 12-month depreciation period for all supported
versions on Docker Compose. All prior and current product versions will continue to be
supported on Docker Compose until January 2025. However, production DCT workloads in
Docker Compose are not supported.

Data Control Tower – Data Control Tower Home

39 https://dct.delphix.com/docs/latest/installation-and-setup-for-kubernetes
40 https://dct.delphix.com/docs/latest/installation-and-setup-for-openshift
41 https://dct.delphix.com/docs/latest/installation-and-setup-for-kubernetes
42 https://dct.delphix.com/docs/latest/installation-and-setup-for-openshift

Deployment – 76

•
•
•
•
•
•

•
•
•
•
•

Installation and setup for Docker Compose (see page 76)

Bootstrapping API Keys (see page 79)

Custom configuration (see page 81)

Docker logs (see page 83)

Migration topics (see page 83)

Admin topics for Docker Compose (see page 90)

6.3.1 Installation and setup for Docker Compose

6.3.1.1 Hardware requirements

The hardware requirements for Data Control Tower are listed below. In addition to these requirements,
inbound port 443 must be open for API clients, and outbound port 443 to engines.

CPU: 4-Core
CPU Architecture: x86_64
Memory: 16GB
Storage: 50GB
Port: 443

It is highly recommended that new DCT installations are performed on Kubernetes39 or
OpenShift40.

Delphix has announced the depreciation of support for Docker Compose with DCT version
13.0.0. The January 2024 release starts a 12-month depreciation period for all supported
versions on Docker Compose. All prior and current product versions will continue to be
supported on Docker Compose until January 2025. However, production DCT workloads in
Docker Compose are not supported.
It is highly recommended that new DCT installations are performed on Kubernetes41 or
OpenShift42.

https://dct.delphix.com/docs/latest/installation-and-setup-for-kubernetes
https://dct.delphix.com/docs/latest/installation-and-setup-for-openshift
https://dct.delphix.com/docs/latest/installation-and-setup-for-kubernetes
https://dct.delphix.com/docs/latest/installation-and-setup-for-openshift
https://dct.delphix.com/docs/latest/installation-and-setup-for-kubernetes
https://dct.delphix.com/docs/latest/installation-and-setup-for-openshift
https://dct.delphix.com/docs/latest/installation-and-setup-for-kubernetes
https://dct.delphix.com/docs/latest/installation-and-setup-for-openshift

Data Control Tower – Data Control Tower Home

43 https://docs.docker.com/engine/install/#server
44 https://docs.docker.com/engine/install/
45 https://docs.docker.com/compose/install/
46 https://docs.docker.com/engine/install/linux-postinstall/

Deployment – 77

6.3.1.2 Installation requirements (Docker Compose)

DCT requires Docker and Docker Compose to run, thus, Linux versions and distributions that have been
verified to work with Docker are supported. To see a list of supported distributions, please reference this
Docker article43.

This example uses a Docker installation44 and is completed on an Ubuntu 20.04 VM.

To begin, uninstall any old versions of Docker.

sudo apt-get remove docker docker-engine docker.io containerd runc

Next, update the package lists and install Docker.

sudo apt-get update
sudo apt-get install docker.io

Last, install Docker Compose45.

sudo curl -L "https://github.com/docker/compose/releases/download/1.29.1/docker-
compose-$(uname -s)-$(uname -m)" -o /usr/local/bin/docker-compose
sudo chmod +x /usr/local/bin/docker-compose

6.3.1.2.1 Running Docker as non-root (optional)

To avoid prefacing the Docker command with sudo, create a Unix group called docker and add users to it.
When the Docker daemon starts, it creates a Unix socket accessible by members of the Docker group. See
Docker Post Installation46 documentation for details.

sudo groupadd docker
sudo usermod -aG docker $USER

Docker-Compose is packaged with Docker engine version 20.10.15 and up.

https://docs.docker.com/engine/install/#server
https://docs.docker.com/engine/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/engine/install/linux-postinstall/
https://docs.docker.com/engine/install/#server
https://docs.docker.com/engine/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/engine/install/linux-postinstall/

Data Control Tower – Data Control Tower Home

47 https://download.delphix.com/folder

Deployment – 78

6.3.1.3 Unpack and install DCT

Once Docker and Docker Compose are installed, DCT can be installed. Begin by downloading the latest
version of the tarball from the Delphix Download site47. Next, transfer the file to the Linux machine where
Docker is installed. Run the following commands to extract the containers and load them into Docker (where
x.0.0 should be changed to the version of DCT being installed):

tar -xzf delphix-dct-x.0.0.tar.gz
for image in *tar; do sudo docker load --input $image; done

6.3.1.4 Run DCT

To run DCT, navigate to the location of the extracted docker-compose.yaml file from the tarball and run the
following command. Using -d in the command will start up the application in the background.

sudo docker-compose up -d

Running docker ps should show 10 containers up and running:

sudo docker ps
CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES
75a9df0cae07 delphix-dct-proxy:x.0.0 "/sbin/tini -- /boot…" 7 seconds
ago Up 4 seconds 0.0.0.0:443->8443/tcp delphix-dct-proxy:x.0.0
a23f4fbe0220 delphix-dct-app:x.0.0 "java -jar /opt/delp…" 7 seconds
ago Up 5 seconds delphix-dct-app:x.0.0
96ba8018fa03 delphix-dct-data-library:x.0.0 "/usr/bin/tini -- ./…" 7 seconds
ago Up 5 seconds delphix-dct-data-library:x.0.0
8e5b1e671acc delphix-dct-jobs:x.0.0 "/usr/bin/tini -- ./…" 7 seconds
ago Up 5 seconds delphix-dct-jobs:x.0.0
96049058f025 delphix-dct-data-bookmarks:x.0.0 "/usr/bin/tini -- ./…" 7 seconds
ago Up 5 seconds delphix-dct-data-bookmarks:x.0.0
20d1782cb3bb delphix-dct-ui:x.0.0 "node ./index.js" 7 seconds
ago Up 5 seconds delphix-dct-ui:x.0.0
4fae43c79e8d delphix-dct-virtualization:x.0.0 "/usr/bin/tini -- ./…" 7 seconds
ago Up 5 seconds delphix-dct-virtualization:x.0.0
83d7d661d8a0 delphix-dct-graphql:x.0.0 "/bin/sh -c 'BASE_UR…" 7 seconds
ago Up 6 seconds delphix-dct-graphql:x.0.0
3dded474e28b delphix-dct-postgres:x.0.0 "docker-entrypoint.s…" 7 seconds
ago Up 6 seconds 5432/tcp delphix-dct-postgres:x.0.0
2sdrt89y896h delphix-dct-masking:x.0.0 "java -jar /opt/delp…" 7 seconds
ago Up 5 seconds

https://download.delphix.com/folder
https://download.delphix.com/folder

Data Control Tower – Data Control Tower Home

48 https://dct.delphix.com/docs/latest/installation-and-setup-for-kubernetes
49 https://dct.delphix.com/docs/latest/installation-and-setup-for-openshift
50 https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Authorization

Deployment – 79

1.

2.

a.

b.

6.3.1.5 Initial logging configuration

To restrict boundless log file generation, DCT is now shipped with default logging drivers provided with
default values for max-size and max-file options, for all services in the docker-compose.yaml file.
These values can also be overwritten to correspond with the user requirement. Use the process below to
modify the settings.

Open the docker-compose.yaml file.

Add the following lines in every service section below.

logging:
 driver: "json-file"
 options:
 max-file: "5"
 max-size: 10m

The driver parameter above means the logging driver is a JSON file. For these services, a

maximum of five log files (max-file) will be retained with a size of 10MB (max-size),
after which files are overwritten.
The maximum number of logs and the maximum log file size shown in 2a can be changed by
updating the values for max-file and max-size .

6.3.2 Bootstrapping API Keys

API keys are the default method to authenticate with DCT. This is done by including the key in the HTTP
Authorization request header50 with type apk .

Delphix has announced the depreciation of support for Docker Compose with DCT version
13.0.0. The January 2024 release starts a 12-month depreciation period for all supported
versions on Docker Compose. All prior and current product versions will continue to be
supported on Docker Compose until January 2025. However, production DCT workloads in
Docker Compose are not supported.
It is highly recommended that new DCT installations are performed on Kubernetes48 or
OpenShift49.

https://dct.delphix.com/docs/latest/installation-and-setup-for-kubernetes
https://dct.delphix.com/docs/latest/installation-and-setup-for-openshift
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Authorization
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Authorization
https://dct.delphix.com/docs/latest/installation-and-setup-for-kubernetes
https://dct.delphix.com/docs/latest/installation-and-setup-for-openshift

Data Control Tower – Data Control Tower Home

Deployment – 80

A cURL example using an example key of
1.0p9PMkZO4Hgy0ezwjhX0Fi4lEKrD4pflejgqjd0pfKtywlSWR9G0fIaWajuKcBT3 would appear as:

curl --header 'Authorization: apk
1.0p9PMkZO4Hgy0ezwjhX0Fi4lEKrD4pflejgqjd0pfKtywlSWR9G0fIaWajuKcBT3'

cURL (like web browsers and other HTTP clients) will not connect to DCT over HTTPS unless a valid TLS
certificate has been configured for the Nginx server. If this configuration step (see page 116) has not been
performed yet and the risk is comprehended, you may disable the check in the HTTP client. For instance, this
can done with cURL using the --insecure flag.

6.3.2.1 Bootstrap first API key

There is a special process to bootstrap the creation of the first API key. This first API key should only be used
to create another key and then promptly deleted, since the bootstrap API will appear in the logs. This process
can be repeated as many times as needed, for example, in a case where existing API keys are lost or have
been deleted. It also means that the Linux users with permissions to edit the docker-compose file implicitly
have the ability to get an API key at any time. There is no mechanism to lock this down after the first
bootstrap key is created.

Begin by stopping the application with the following command:

sudo docker-compose stop

Once the application is stopped, edit the docker-compose.yaml file and modify the following lines to the DCT
section, to set the API_KEY_CREATE to the string value "true":

services:
 gateway:
 environment:
 API_KEY_CREATE: "true"

Start DCT again with sudo docker-compose up . You will see the following output in the logs for the app
container (the key will be different from this example):

API keys are long-live tokens and as a result, do not automatically expire in the future. They
remain valid until they are deleted or destroyed from DCT.

The cURL version must be 7.43 or higher.

Data Control Tower – Data Control Tower Home

51 https://dct.delphix.com/docs/latest/installation-and-setup-for-kubernetes
52 https://dct.delphix.com/docs/latest/installation-and-setup-for-openshift
53 https://docs.docker.com/storage/bind-mounts/

Deployment – 81

NEWLY GENERATED API KEY: 1.0p9PMkZO4Hgy0ezwjhX0Fi4lEKrD4pflejgqjd0pfKtywlSWR9G0fIaWaj
uKcBT3

Copy the API Key and shut down the DCT app. The API key can now be used to authenticate with DCT.
Remember that the API Key value must be prefixed with apk. An example cURL command with the above API
Key appears as follows:

curl --header 'Authorization: apk
1.0p9PMkZO4Hgy0ezwjhX0Fi4lEKrD4pflejgqjd0pfKtywlSWR9G0fIaWajuKcBT3'

Edit the docker-compose.yaml file to set the API_KEY_CREATE environment variable value back to "false"

and restart DCT again with sudo docker-compose up -d .

6.3.3 Custom configuration

6.3.3.1 Introduction

DCT was designed for users to configure Delphix applications in a way that would meet their security
requirements, which handled with a custom configuration. This article provides background information on
performing custom configurations, which are referenced throughout DCT articles and sections.

6.3.3.2 Bind mounts

Configuration of DCT is achieved through a combination of API calls and the use of Docker bind mounts53. A
bind mount is a directory or file on the host machine that will be mounted inside the container. Changes
made to the files on the host machine will be reflected inside the container. It does not matter where the files
live on the host machine, but the files must be mounted to specific locations inside the container so that the
application can find them.

Delphix has announced the depreciation of support for Docker Compose with DCT version
13.0.0. The January 2024 release starts a 12-month depreciation period for all supported
versions on Docker Compose. All prior and current product versions will continue to be
supported on Docker Compose until January 2025. However, production DCT workloads in
Docker Compose are not supported.
It is highly recommended that new DCT installations are performed on Kubernetes51 or
OpenShift52.

https://dct.delphix.com/docs/latest/installation-and-setup-for-kubernetes
https://dct.delphix.com/docs/latest/installation-and-setup-for-openshift
https://docs.docker.com/storage/bind-mounts/
https://docs.docker.com/storage/bind-mounts/
https://dct.delphix.com/docs/latest/installation-and-setup-for-kubernetes
https://dct.delphix.com/docs/latest/installation-and-setup-for-openshift

Data Control Tower – Data Control Tower Home

Deployment – 82

The DCT and proxy containers can both be configured via separate bind mounted directories. Each container
requires all configuration files to be mounted to the /etc/config directory inside the container.
Therefore, it is recommended to create a directory for each container on the host machine to store all of the
configuration files and mount them to /etc/config . This is done by editing the docker-

compose.yaml . Under proxy services, add a volumes section if one does not already exist; this is used to

mount the configuration directory on the host to /etc/config . For example, if /my/proxy/config is
the directory on the host that contains the configuration files, then the relevant part of the compose file
would look like this:

services:
 proxy:
 volumes:
 - /my/proxy/config:/etc/config

To change the configuration of the DCT container, make a similar change under its service section, the only
difference being the directory on the host. After making this change, the application will need to be stopped
and restarted.

The structure of /my/proxy/config will need to match the required layout in /etc/config . When
each container starts, it will create default versions of each file and place them in the expected location. It is
highly recommended to start from the default version of these files. For example, if /my/proxy/config is
the bind mount directory on the host, it could be populated with all the default configuration files by running
the following commands.

First, create an nginx directory inside /my/proxy/config on the host.

cd /my/proxy/config
mkdir nginx

Find the id of the proxy container with docker ps. Look for the container with a delphix-dct-proxy image
name. To determine the user and group ownership for any configuration files, start the containers and open a
shell to the relevant one (nginx in this example), then examine the current user/group IDs associated with the
files (where x.0.0 should be changed to the version of DCT being installed).

docker ps

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES
ac343412492a delphix-dct-proxy:x.0.0 "/bootstrap.sh" 8 minutes ago Up
8 minutes 0.0.0.0:443->443/tcp, :::443->443/tcp dct-packaged_proxy_1

In the above example, ac343412492a is the id. Run the following command to copy the default files to the
bind mount.

docker cp <container id>:/etc/config/nginx /my/proxy/config/nginx

Data Control Tower – Data Control Tower Home

54 https://dct.delphix.com/docs/latest/installation-and-setup-for-kubernetes
55 https://dct.delphix.com/docs/latest/installation-and-setup-for-openshift
56 https://docs.docker.com/config/containers/logging/
57 https://docs.docker.com/config/containers/logging/configure/
58 https://docs.docker.com/compose/compose-file/compose-file-v3/#logging

Deployment – 83

•
•

One can always go back to the original configuration by removing the bind-mount and restarting the
container or using docker cp as in the previous example to overwrite the custom files with the default
versions.

6.3.4 Docker logs

DCT leverages the Docker logging56 infrastructure. All containers log to stdout and stderr so that they
are processed by Docker. Docker supports logging drivers for a variety of tools, such as Fluentd, Amazon
CloudWatch, and Splunk.

Use the Configure logging drivers57 Docker article to configure them – these changes will need to be made to
the docker-compose.yaml file. This section of the Docker article58 explains how to alter the Compose file to
adjust the logging driver. For example, to use syslog for the proxy container, it would appear as follows.

services:
 proxy:
 logging:
 driver: syslog
 options:
 syslog-address: "tcp://192.123.1.23:123"

6.3.5 Migration topics

Migrate to Kubernetes (see page 84)

Migrate to OpenShift (see page 87)

Delphix has announced the depreciation of support for Docker Compose with DCT version
13.0.0. The January 2024 release starts a 12-month depreciation period for all supported
versions on Docker Compose. All prior and current product versions will continue to be
supported on Docker Compose until January 2025. However, production DCT workloads in
Docker Compose are not supported.
It is highly recommended that new DCT installations are performed on Kubernetes54 or
OpenShift55.

https://dct.delphix.com/docs/latest/installation-and-setup-for-kubernetes
https://dct.delphix.com/docs/latest/installation-and-setup-for-openshift
https://docs.docker.com/config/containers/logging/
https://docs.docker.com/config/containers/logging/configure/
https://docs.docker.com/compose/compose-file/compose-file-v3/#logging
https://docs.docker.com/config/containers/logging/
https://docs.docker.com/config/containers/logging/configure/
https://docs.docker.com/compose/compose-file/compose-file-v3/#logging
https://dct.delphix.com/docs/latest/installation-and-setup-for-kubernetes
https://dct.delphix.com/docs/latest/installation-and-setup-for-openshift

Data Control Tower – Data Control Tower Home

Deployment – 84

6.3.5.1 Migrate to Kubernetes

6.3.5.1.1 Overview

Installations starting on Docker Compose may be migrated to Kubernetes by moving the persistent data
store using the following steps. In-place upgrades from Docker Compose to Kubernetes are not supported.

6.3.5.1.1.1 Migration Process

Stop DCT services. In order to avoid a situation of losing data, stop serving the upcoming traffic with:

docker-compose stop

Copy the Postgres Docker volume folder data on a local machine with:

mkdir database
docker cp {dbcontainer_Id}:/var/lib/postgresql/data ./database

Copy the encryption key Docker volume folder data on a local machine with:

mkdir data_key
docker cp {gateway_container_id}:/data ./data_key

Copy the masking encryption key Docker volume folder data on a local machine with:

mkdir masking_data_key
docker cp {masking_container_id}:/data ./masking_data_key

During the migration process, there will be a downtime period where the service cannot be used.

Mounted Docker volume folder content for database is copied in database folder on local
machine.

Mounted Docker volume folder content for encryption key is copied in the data_key folder on
local machine.

Data Control Tower – Data Control Tower Home

Deployment – 85

Move the copied volume folders (database, data_key and masking_data_key from the previous step) to the
Kubernetes host machine where DCT is up and running.

Update the values.yaml file to add the list of certificates which were used in the previous DCT version
(present in mounted trustStore). Update the deployment with the new values.yaml file.

Terminate the proxy pod to stop serving external traffic with:

kubectl scale --replicas=0 deployment/proxy -n dct-services

Terminate the database to stop internal threads using the database with:

kubectl scale --replicas=0 deployment/database -n dct-services

Create a dummy pod to access the Persistent Volume. Use the Pod.yaml as an example:

apiVersion: v1
kind: Pod
metadata:
Namespace: dct-services
name: dummy-pod
 labels:
 app: dummy-pod
spec:
 containers:
 - image: ubuntu
 command:
 - "sleep"
 - "604800"
 imagePullPolicy: IfNotPresent
 name: ubuntu
 restartPolicy: Always
 volumes:
 - name: gwdatabase-data
 persistentVolumeClaim:
 claimName: gwdatabase-data

Followed by this command to actually create the dummy pod:

kubectl apply -f pod.yaml -n dct-services

Restore previous DCT version volume data with DCT deployed on the Kubernetes setup (in Persistent
Volume).

Move the encryption key with:

Mounted masking Docker volume folder content for encryption key is copied in the
masking_data_key folder on local machine.

Data Control Tower – Data Control Tower Home

Deployment – 86

cd data_key
kubectl cp data dct-services/{gateway_pod_name}:/

Move the masking encryption key with:

cd masking_data_key
kubectl cp data dct-services/{masking_pod_name}:/

Move the Postgres data with:

cd database
kubectl cp data dct-services/{dummy_pod_name}:/var/lib/postgresql

Delete the dummy pod with:

kubectl delete pod dummy-pod -n dct-services

Start the database pod (scale to 1) with:

kubectl scale --replicas=1 deployment/database -n dct-services

Delete or patch the gateway pod with:

kubectl delete pod {gateway_pod_name} -n dct-services

Delete or patch the data-library pod with:

kubectl delete pod {data-library_pod_name} -n dct-services

Delete or patch the jobs pod with:

kubectl delete pod {jobs_pod_name} -n dct-services

Delete or patch the data-bookmarks pod with:

kubectl delete pod {data-bookmarks_pod_name} -n dct-services

Delete or patch the masking pod with:

kubectl delete pod {masking_pod_name} -n dct-services

Data Control Tower – Data Control Tower Home

Deployment – 87

Start the proxy service to serve the external service:

kubectl scale --replicas=1 deployment/proxy -n dct-services

6.3.5.2 Migrate to OpenShift

6.3.5.2.1 Overview

Installations starting on Docker Compose may be migrated to OpenShift by moving the persistent data store
using the following steps. In-place upgrades from Docker Compose to OpenShift are not supported.

6.3.5.2.1.1 Migration Process

Stop DCT services. In order to avoid a situation of losing data, stop serving the upcoming traffic with:

docker-compose stop

Copy the Postgres Docker volume folder data on a local machine with:

mkdir database
docker cp {dbcontainer_Id}:/var/lib/postgresql/data ./database

Copy the encryption key Docker volume folder data on a local machine with:

mkdir data_key
docker cp {gateway_container_id}:/data ./data_key

Copy the masking encryption key Docker volume folder data on a local machine with:

mkdir masking_data_key
docker cp {masking_container_id}:/data ./masking_data_key

During the migration process, there will be a downtime period where the service cannot be used.

Data Control Tower – Data Control Tower Home

Deployment – 88

Move the copied volume folders (database, data_key and masking_data_key from the previous step) to the
Kubernetes host machine where DCT is up and running.

Update the values.yaml file to add the list of certificates which were used in the previous DCT version
(present in mounted trustStore). Update the deployment with the new values.yaml file.

Terminate the proxy pod to stop serving external traffic with:

oc scale --replicas=0 deployment/proxy -n dct-services

Terminate the database to stop internal threads using the database with:

oc scale --replicas=0 deployment/database -n dct-services

Create a dummy pod to access the Persistent Volume. Use the Pod.yaml as an example:

apiVersion: v1
kind: Pod
metadata:
Namespace: dct-services
name: dummy-pod
 labels:
 app: dummy-pod
spec:
 containers:
 - image: ubuntu
 command:
 - "sleep"
 - "604800"
 imagePullPolicy: IfNotPresent
 name: ubuntu
 restartPolicy: Always
 volumes:
 - name: gwdatabase-data
 persistentVolumeClaim:
 claimName: gwdatabase-data

Followed by this command to actually create the dummy pod:

•

•

•

Mounted Docker volume folder content for database is copied in database folder on local
machine.

Mounted Docker volume folder content for encryption key is copied in the data_key
folder on local machine.

Mounted masking Docker volume folder content for encryption key is copied in the
masking_data_key folder on local machine.

Data Control Tower – Data Control Tower Home

Deployment – 89

oc apply -f pod.yaml -n dct-services

Restore previous DCT version volume data with DCT deployed on the Kubernetes setup (in Persistent
Volume).

Move the encryption key with:

cd data_key
oc cp data dct-services/{gateway_pod_name}:/

Move the encryption key with:

cd masking_data_key
oc cp data dct-services/{masking_pod_name}:/

Move the Postgres data with:

cd database
oc cp data dct-services/{dummy_pod_name}:/var/lib/postgresql

Delete the dummy pod with:

oc delete pod dummy-pod -n dct-services

Start the database pod (scale to 1) with:

oc scale --replicas=1 deployment/database -n dct-services

Delete or patch the gateway pod with:

oc delete pod {gateway_pod_name} -n dct-services

Delete or patch the data-library pod with:

oc delete pod {data-library_pod_name} -n dct-services

Delete or patch the jobs pod with:

oc delete pod {jobs_pod_name} -n dct-services

Delete or patch the data-bookmarks pod with:

Data Control Tower – Data Control Tower Home

59 https://dct.delphix.com/docs/latest/installation-and-setup-for-kubernetes
60 https://dct.delphix.com/docs/latest/installation-and-setup-for-openshift
61 https://docs.docker.com/storage/volumes/#backup-restore-or-migrate-data-volumes

Deployment – 90

•
•
•

oc delete pod {data-bookmarks_pod_name} -n dct-services

Delete or patch the masking pod with:

oc delete pod {masking_pod_name} -n dct-services

Start the proxy service to serve the external service:

oc scale --replicas=1 deployment/proxy -n dct-services

6.3.6 Admin topics for Docker Compose

Backup DCT on Docker Compose (see page 90)

Deployment upgrade for Docker Compose (see page 91)

Factory reset DCT for Docker Compose (see page 93)

6.3.6.1 Backup DCT on Docker Compose

This article discusses how to backup DCT. The data that needs to be backed up is the Docker volumes used
by the DCT container, gwdatabase container, and the configuration directories on the host that are bind
mounted to the containers.

The Docker volumes named {xxx}delphix-dct-data , {xxx}delphix-dct-database-data and

{xxx}delphix-dct-masking-data should be backed up to prevent data loss. This Docker article61

explains how to backup a data volume.

The bind mount directories containing the configuration files are standard directories that can be backed up
as desired. A simple approach would be to create a tar file of the contents. If /my/config is the bind mount
directory on the host, then this can be done with the following command:

Delphix has announced the depreciation of support for Docker Compose with DCT version
13.0.0. The January 2024 release starts a 12-month depreciation period for all supported
versions on Docker Compose. All prior and current product versions will continue to be
supported on Docker Compose until January 2025. However, production DCT workloads in
Docker Compose are not supported.
It is highly recommended that new DCT installations are performed on Kubernetes59 or
OpenShift60.

https://dct.delphix.com/docs/latest/installation-and-setup-for-kubernetes
https://dct.delphix.com/docs/latest/installation-and-setup-for-openshift
https://docs.docker.com/storage/volumes/#backup-restore-or-migrate-data-volumes
https://docs.docker.com/storage/volumes/#backup-restore-or-migrate-data-volumes
https://dct.delphix.com/docs/latest/installation-and-setup-for-kubernetes
https://dct.delphix.com/docs/latest/installation-and-setup-for-openshift

Data Control Tower – Data Control Tower Home

62 https://dct.delphix.com/docs/latest/installation-and-setup-for-kubernetes
63 https://dct.delphix.com/docs/latest/installation-and-setup-for-openshift

Deployment – 91

tar -czf gateway-backup.tgz /my/config

6.3.6.2 Deployment upgrade for Docker Compose

Delphix has announced the depreciation of support for Docker Compose with DCT version
13.0.0. The January 2024 release starts a 12-month depreciation period for all supported
versions on Docker Compose. All prior and current product versions will continue to be
supported on Docker Compose until January 2025. However, production DCT workloads in
Docker Compose are not supported.
It is highly recommended that new DCT installations are performed on Kubernetes62 or
OpenShift63.

1.

2.

DCT versions 2.0.0 through 6.0.2 running on Docker Compose, that are being upgraded to DCT
7.0.0 or later, may experience potential failure to start post-upgrade, resulting in a "permission
denied" error in the logs. Operations post-upgrade may also fail with internal errors.
The issue is due to the UID running the application containers changing from UID 1000 (in DCT
2.0.0 through 6.0.2) to UID 1010 (in DCT 7.0.0 and later). Resolving the issues requires the
following one-time change and no container restart is required:

Change ownership of the volume associated to the gateway container to the new UID:
docker exec -u 0 -it <gateway-container-name> chown

delphix:delphix /data

If bind mounts have been used to configure DCT, they must grant permission to the user
with UID 1010 (GUID 1010) to read/write files, for example:
chown 1010:1010 /path/to/nginx/bind/mount

Starting from DCT 12.0.0 we have introduced one new service (container) named masking.
Memory and CPU requirement for this new container is 512Mi and 500m respectively.

This container creates a new volume mount masking-data .
If you are using masking engines with self sign certificated and previously mounted the
truststore to the gateway pod like:

https://dct.delphix.com/docs/latest/installation-and-setup-for-kubernetes
https://dct.delphix.com/docs/latest/installation-and-setup-for-openshift
https://dct.delphix.com/docs/latest/installation-and-setup-for-kubernetes
https://dct.delphix.com/docs/latest/installation-and-setup-for-openshift

Data Control Tower – Data Control Tower Home

Deployment – 92

6.3.6.2.1 Introduction

This article describes the procedure to upgrade the DCT version without losing any data. Docker Compose
uses the concept of ‘project’ to create unique identifiers for all of a project’s containers and other resources
(like volumes, etc.).

Get the current project name and note it down using the following command:

The volume name would be of the format {project-name}_gateway-data and {project-name}_gwdatabase-
data. In the below example, the project name is delphix-dct.

docker volume ls
DRIVER VOLUME NAME
local delphix-dct_gateway-data
local delphix-dct_gwdatabase-data
local delphix-dct_masking-data

Bring down DCT services using the following command:

docker compose down

Refer to the Installation and Setup article to download and extract the new release tarball, then load Docker
images.

Navigate to the extracted directory which contains the docker-compose.yaml file. By default, Docker
Compose uses the extracted folder name as project-name.

With that, either rename the extracted folder to match the project-name and run:

volumes:
- gateway-data:/data
- /truststore/config/path/on/host:/etc/config/certs

Then please mount this old truststore to the masking service as well by keeping it in separate
folder and uncomment below lined in docker-compose.yaml masking service section:

volumes:
- masking-data:/data
- /truststore/config/path/on/host:/etc/config/certs

Edit the docker-compose.yaml file. Changes made to the docker-compose.yaml prior to upgrade
file must be applied to the newly extracted docker-compose.yaml file.

Data Control Tower – Data Control Tower Home

64 https://dct.delphix.com/docs/latest/installation-and-setup-for-kubernetes
65 https://dct.delphix.com/docs/latest/installation-and-setup-for-openshift

Deployment – 93

docker compose up -d

OR run the below command with the project-name noted above from step #1 above

docker compose -p <project-name> up -d

6.3.6.3 Factory reset DCT for Docker Compose

This article explains how to factory reset DCT. Factory resetting means deleting all of the configuration and
data associated with DCT. Perform this step only if you are absolutely sure about this and understand the
implications.

Bring all of the DCT services down with this command:

docker compose down

List all Docker volumes being used and note down the volume names:

docker volume ls
DRIVER VOLUME NAME
local dct_gateway-data
local dct_masking-data

If the -p argument is used to deploy DCT services, then the corresponding command to bring
down the DCT services would be:

docker compose -p <project-name> down

Delphix has announced the depreciation of support for Docker Compose with DCT version
13.0.0. The January 2024 release starts a 12-month depreciation period for all supported
versions on Docker Compose. All prior and current product versions will continue to be
supported on Docker Compose until January 2025. However, production DCT workloads in
Docker Compose are not supported.
It is highly recommended that new DCT installations are performed on Kubernetes64 or
OpenShift65.

https://dct.delphix.com/docs/latest/installation-and-setup-for-kubernetes
https://dct.delphix.com/docs/latest/installation-and-setup-for-openshift
https://dct.delphix.com/docs/latest/installation-and-setup-for-kubernetes
https://dct.delphix.com/docs/latest/installation-and-setup-for-openshift

Data Control Tower – Data Control Tower Home

Deployment – 94

local dct_gwdatabase-data

Delete the Docker volumes that are listed from the previous command:

docker volume rm dct_gateway-data
docker volume rm dct_gwdatabase-data
docker volume rm dct_masking-data

6.4 Engines: connecting/authenticating

6.4.1 Introduction

After DCT Authentication is complete, the HTTPS should be securely configured on DCT and able to be
authenticated against. The next step is to register an engine with DCT so that it can fetch results. DCT
connects to all engines over HTTPS, thus some configurations might be required to ensure it can
communicate successfully.

6.4.2 Truststore for HTTPS

If the CA certificate that signed the engine's HTTPS certificate is not a trusted root CA certificate present in
the JDK, then custom CA certificates can be provided to DCT. If these certificates are not provided, a secure
HTTPS connection cannot be established and registering the engine will fail. The insecure_ssl engine
registration parameter can be used to bypass the check, however, this should not be used unless the risks
are understood.

Get the public certificate of the CA that signed the engine’s HTTPS certificate in PEM format. IT team help
may be required to get the correct certificates. Base64 encode the certificate with:

cat mycertfile.pem | base64 -w 0

Copy the Base64 encoded value from the previous step and configure in values.yaml file under
truststoreCertificates section. e.g. section will look like this:

truststoreCertificates:
<certificate_name>.crt: <base64 encode certificate string value in single line>

<certificate_name> can be any logically valid string value for e.g. “engine”.

All the certificates configured in truststoreCertificates section will be read and included in the trustStore
which would be then used for SSL/TLS communication between DCT and Delphix Engine.

Data Control Tower – Data Control Tower Home

66 https://www.vaultproject.io/docs/auth/token
67 https://www.vaultproject.io/docs/auth/approle
68 https://www.vaultproject.io/docs/auth/cert
69 https://www.vaultproject.io/docs/commands

Deployment – 95

6.4.3 Authentication with engine

All authentication with the Delphix Engine is done with the username and password of a domain admin
engine user. There are two methods of storing these credentials with DCT. They can either be stored and
encrypted on DCT itself or retrieved from a password vault. We recommend fetching the credentials from a
vault. Currently only the HashiCorp vault is supported.

6.4.4 HashiCorp vault

There are two high-level steps to configuring a HashiCorp vault. The first is to set up authentication with the
vault and register the vault. The second is to tell DCT how to get the specific engine credentials needed from
that registered vault. A single vault can be used for multiple different Delphix Engines.

6.4.4.1 Vault authentication and registration

First, DCT needs to be able to authenticate with the vault. DCT supports the Token66, AppRole67, and TLS
Certificates68 authentication methods. This is done by passing a command to the HashiCorp CLI69. It is
recommended to first ensure that successful authentication is done and one can retrieve the credentials with
the HashiCorp CLI directly to ensure the correct commands are passed to DCT.

Adding a vault to DCT is done through API calls to the /v2/management/vaults/hashicorp endpoint. All
authentication methods requires the location of the vault is provided through the env_variables property in
the POST body like so:

"env_variables": {
 "VAULT_ADDR": "https://10.119.132.40:8200"
 }

6.4.4.2 Token

To use the token authentication method, this needs to be included as part of the env_variables field. The full
example to register the vault would appear as:

curl --location --request POST 'https://<hostname>/v2/management/vaults/hashicorp' \
--header 'Content-Type: application/json' \
--header 'Accept: application/json' \
--header 'Authorization: apk <your API key>' \
--data-raw '{
 "env_variables": {
 "VAULT_TOKEN": "<your token>"
 "VAULT_ADDR": "https://10.119.132.40:8200"

https://www.vaultproject.io/docs/auth/token
https://www.vaultproject.io/docs/auth/approle
https://www.vaultproject.io/docs/auth/cert
https://www.vaultproject.io/docs/commands
https://www.vaultproject.io/docs/auth/token
https://www.vaultproject.io/docs/auth/approle
https://www.vaultproject.io/docs/auth/cert
https://www.vaultproject.io/docs/commands

Data Control Tower – Data Control Tower Home

Deployment – 96

 }
}'

A response should be received similar to the lines below:

{
 "id": 2,
 "env_variables": {
 "VAULT_TOKEN": "<your token>"
 "VAULT_ADDR": "https://10.119.132.40:8200"
 }
}

Note the id of the vault, this will be needed in the next step to register the engine.

6.4.4.3 AppRole

To use the AppRole authentication method, this needs to be included as part the login_command_args field,
as shown below.

"login_command_args":
 ["write", "auth/approle/login", "role_id=1", "secret_id=123"]

The full example to register the vault would appear as:

curl --location --request POST 'https://<hostname>/v2/management/vaults/hashicorp' \
--header 'Content-Type: application/json' \
--header 'Accept: application/json' \
--header 'Authorization: apk <your API key>' \
--data-raw '{
 "env_variables": {
 "VAULT_ADDR": "https://10.119.132.40:8200"
 },
 "login_command_args":
 ["write", "auth/approle/login", "role_id=1", "secret_id=123"]
}'

 A response should be received similar to the lines below:

{
 "id": 2,
 "env_variables": {
 "VAULT_TOKEN": "<your token>"
 "VAULT_ADDR": "https://10.119.132.40:8200"
 }
}

Data Control Tower – Data Control Tower Home

70 https://openresty.org/en/

Deployment – 97

•
•
•

6.4.5 TLS certificates

The configuration of mutual TLS authentication requires an additional step. This feature currently is NOT
supported for Kubernetes deployment of DCT. This will be covered in later releases.

6.4.5.1 Retrieving engine credentials

Once DCT can authenticate with the vault, it needs to know how to fetch the relevant engine credentials.
When registering an engine, the user will need to provide the HashiCorp CLI commands through the
hashicorp_vault_username_command_args and hashicorp_vault_password_command_args

parameters.

The relevant part of the engine registration payload will look like the following:

'{
 "hashicorp_vault_id": 1
 "hashicorp_vault_username_command_args": ["kv", "get", "-field=username", "kv-
v2/delphix-engine-secrets/engineUser"]
,
 "hashicorp_vault_password_command_args": ["kv", "get", "-field=password", "kv-
v2/delphix-engine-secrets/engineUser"]
}'

The hashicorp_vault_id will be the ID that was returned as part of the previous step. Note that the exact paths
to fetch the username and password will vary depending on the exact configuration of the vault.

6.5 Accounts: connecting/authenticating
There are 5 supported methods for authentication; API keys, Username/Password, LDAP/Active Directory,
SAML/SSO, and OpenID Connect. These authentication methods are detailed on the corresponding pages in
this section.

API keys (see page 98)

Username/password (see page 100)

LDAP/Active Directory (see page 103)

DCT uses Nginx/OpenResty70 as an HTTP server and a reverse proxy for the application. Using
the default configuration, all connections to DCT are over HTTPS and require the user to
authenticate. The Nginx/OpenResty configuration files can be edited via /etc/config bind
mounts, for the proxy container to customize the HTTP server and change options (such as TLS
versions).

https://openresty.org/en/
https://openresty.org/en/

Data Control Tower – Data Control Tower Home

71 https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Authorization

Deployment – 98

• SAML/SSO (see page 111)

6.5.1 API keys

API keys are the default method to authenticate with DCT. This is done by including the key in the HTTP
Authorization request header71 with type apk .

A cURL example using an example key of
1.0p9PMkZO4Hgy0ezwjhX0Fi4lEKrD4pflejgqjd0pfKtywlSWR9G0fIaWajuKcBT3 would appear as:

curl --header 'Authorization: apk
1.0p9PMkZO4Hgy0ezwjhX0Fi4lEKrD4pflejgqjd0pfKtywlSWR9G0fIaWajuKcBT3'

cURL (like web browsers and other HTTP clients) will not connect to DCT over HTTPS unless a valid TLS
certificate has been configured for the Nginx server. If this configuration step (see page 116) has not been
performed yet and the risk is comprehended, you may disable the check in the HTTP client. For instance, this
can done with cURL using the --insecure flag.

6.5.1.1 Create and manage API Keys

The initial API key created should be used to create a new admin secure key. This is done by creating a new
Account entity and setting the generate_api_key. The "username" attribute should be the desired name to
uniquely identify the account.

API keys are long-live tokens and as a result, do not automatically expire in the future. They
remain valid until they are deleted or destroyed from DCT.

The cURL version must be 7.43 or higher.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Authorization
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Authorization

Data Control Tower – Data Control Tower Home

Deployment – 99

curl --location --request POST 'https://<hostname>/v2/management/accounts' \
--header 'Content-Type: application/json' \
--header 'Accept: application/json' \
--header 'Authorization: apk
1.0p9PMkZO4Hgy0ezwjhX0Fi4lEKrD4pflejgqjd0pfKtywlSWR9G0fIaWajuKcBT3' \
--data-raw '{
 "username": "secure-key",
 "generate_api_key": true
}'

A response should be received similar to the lines below:

{
 "id": 2,
 "token": "2.vCfC0MnpySYZLshuxap2aZ7xqBKAnQvV7hFnobe7xuNlHS9AF2NQnV9XXw4UyET6"
 "username":"secure-key"
}

Now that the new and secure API key is created, the old one must be deleted for security reasons since the
key appeared in the logs. To do this make the following request:

curl --location --request DELETE 'https://<hostname>/v2/management/api-clients/<id>'
 \
--header 'Content-Type: application/json' \
--header 'Accept: application/json' \
--header 'Authorization: apk
2.vCfC0MnpySYZLshuxap2aZ7xqBKAnQvV7hFnobe7xuNlHS9AF2NQnV9XXw4UyET6'

The id referenced above is the numeric id of the Account. It is the integer before the period in the token. For
example, the id of
1.0p9PMkZO4Hgy0ezwjhX0Fi4lEKrD4pflejgqjd0pfKtywlSWR9G0fIaWajuKcBT3 is 1.

Finally, to list all of the current Accounts, make the following request:

curl --location --request GET 'https://<hostname>/v2/management/accounts/' \
--header 'Content-Type: application/json' \
--header 'Accept: application/json' \
--header 'Authorization: apk <your API key>'

If the cURL version being used is below 7.43, replace the --data-raw option with --data .

Data Control Tower – Data Control Tower Home

Deployment – 100

6.5.2 Username/password

When creating an account, a username and password combination can be associated with the account
(whether an API Key was generated for the account or not). To do so, specify the “username” and “password”
properties in the API request, for example:

curl -k --location --request POST 'https://<hostname>/v2/management/accounts' \
 --header 'Content-Type: application/json' \
 --header 'Accept: application/json' \
 --header 'Authorization: apk
1.0p9PMkZO4Hgy0ezwjhX0Fi4lEKrD4pflejgqjd0pfKtywlSWR9G0fIaWajuKcBT3' \
 --data-raw '{
 "username": "some-username",
 "password": "some-password",
 "generate_api_key": false
 "is_admin": true
}'

The username and password combination can then be used to login via the UI, or to fetch a temporary
access token valid for 24 hours. To do so, call the ‘login’ API endpoint:

curl -k --location --request POST 'https://<hostname>/v2/login' \
 --header 'Content-Type: application/json' \
 --header 'Accept: application/json' \
 --data-raw '{
 "username": "some-username",
 "password": "some-password"
}'

A response should be received similar to the lines below:

{
 "access_token":"eyJhbGciOiJIUzI1NiJ9.eyJpc3MiOiJhcGlndy1zZXJ2aWNlcy1hcHAiLCJzdWIi
OiI4IiwiZXhwIjoxNjYyNTUyMzI3LCJpYXQiOjE2NjI0NjU5MjcsInVzZXJuYW1lIjoic29tZS11c2VybmFtZ
SJ9.Cx_hGU9noyWS6mtK6gjsA85FTgJRQgyJizR5t_akNps",
 "token_type":"Bearer",
 "expires_in":86400
}

The is_admin property will create the account with admin privileges. Remove this property to
create an account without admin privileges.

Data Control Tower – Data Control Tower Home

72 https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Authorization

Deployment – 101

The access token can be used as HTTP Authorization request header72 with type Bearer.

A cURL example using the access token retrieved above would appear as:

curl --header 'Authorization: Bearer
eyJhbGciOiJIUzI1NiJ9.eyJpc3MiOiJhcGlndy1zZXJ2aWNlcy1hcHAiLCJzdWIiOiI4IiwiZXhwIjoxNjYy
NTUyMzI3LCJpYXQiOjE2NjI0NjU5MjcsInVzZXJuYW1lIjoic29tZS11c2VybmFtZSJ9.Cx_hGU9noyWS6mtK
6gjsA85FTgJRQgyJizR5t_akNps'

The password for an account can be updated with the change_password API endpoint, passing in both the
old and new passwords, such as in this example:

curl -k --location --request POST '<hostname>/v2/management/accounts/3/
change_password \
 --header 'Content-Type: application/json' \
 --header 'Accept: application/json' \
 --header 'Authorization: Bearer
eyJhbGciOiJIUzI1NiJ9.eyJpc3MiOiJhcGlndy1zZXJ2aWNlcy1hcHAiLCJzdWIiOiI4IiwiZXhwIjoxNjYy
NTUyMzI3LCJpYXQiOjE2NjI0NjU5MjcsInVzZXJuYW1lIjoic29tZS11c2VybmFtZSJ9.Cx_hGU9noyWS6mtK
6gjsA85FTgJRQgyJizR5t_akNps' \
 --data-raw '{
 "old_password": "some-password",
 "new_password": "new-password"
}'

Following security best practices, the password is not stored on DCT and cannot be retrieved. If the
password has been lost, an account with admin privilege can reset the password for a particular account. It
is recommended to change the password reset by an admin account on the first login, or with the
change_password API, as described above.

This access token should not be confused with ApiKeys. These tokens are short lived tokens and
expire at the end of 24 hours.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Authorization
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Authorization

Data Control Tower – Data Control Tower Home

Deployment – 102

•
•

•
•
•
•
•
•

curl -k --location --request POST '<hostname>/v2/management/accounts/2/
password_reset' \
 --header 'Content-Type: application/json' \
 --header 'Accept: application/json' \
 --header 'Authorization: Bearer
eyJhbGciOiJIUzI1NiJ9.eyJpc3MiOiJhcGlndy1zZXJ2aWNlcy1hcHAiLCJzdWIiOiI4IiwiZXhwIjoxNjYy
NTUyMzI3LCJpYXQiOjE2NjI0NjU5MjcsInVzZXJuYW1lIjoic29tZS11c2VybmFtZSJ9.Cx_hGU9noyWS6mtK
6gjsA85FTgJRQgyJizR5t_akNps' \
 --data-raw '{
 "new_password": "new-password"
}'

In the above example, the admin is resetting the password of an account with id 2 to “new-password”.

6.5.2.1 Password policies

The password policy feature allows users to enable and customize the password policy enforced for local
username/password authentication (does not apply to LDAP/Active Directory or SAML/SSO based
authentication).

6.5.2.2 Understanding password policies

The password policy is a set of requirements that local passwords must satisfy.

min_length: A password must be longer than this length.
reuse_disallow_limit: The user should not reuse old passwords. This tells the number of last used
passwords disallowed to be reused as the new passwords.
uppercase_letter: A password must have at least one capital letter.
lowercase_letter: A password must have at least one lower case letter.
digit: A password must have at least one digit.
special_character: A password must have at least one special character, such as #, $, !
disallow_username_as_password: A password should not be the same as the user name.
maximum_password_attempts: The number of allowed attempts for incorrect password, after which
the account gets locked.

6.5.2.3 Default password policy

By default, DCT does not enforce any password policy.

6.5.2.4 Changing the password policy

To change the current password policy, call the password policy API endpoint, as shown in the example
below:

curl --location --request PATCH 'https://<hostname>/v2/management/accounts/password-
policies' \

Data Control Tower – Data Control Tower Home

Deployment – 103

--header 'Content-Type: application/json' \
--header 'Accept: application/json' \
--header 'Authorization: apk <your API key>' \
--data-raw '{
 "enabled": true,
 "maximum_password_attempts": 2,
 "min_length": 5,
 "reuse_disallow_limit": 3,
 "digit": true,
 "uppercase_letter": true,
 "lowercase_letter": true,
 "special_character": true,
 "disallow_username_as_password": true
}'

Changing the password policy does not affect existing passwords.

6.5.2.5 Disabling local username/password authentication

Username/password authentication (with passwords locally in DCT) can be disabled for individual accounts
by not setting or unsetting their password property, or across the DCT instance using the global properties
API. Disable username/password authentication to force authentication to use an alternate authentication
method (LDAP/Active Directory, SAML/SSO, etc.) as shown in this example:

curl --location --request PATCH 'https://<hostname>/v2/management/properties' \
--header 'Content-Type: application/json' \
--header 'Accept: application/json' \
--header 'Authorization: apk <your API key>' \
--data-raw '{"disable_username_password": true}'

6.5.3 LDAP/Active Directory

6.5.3.1 Configuration

LDAP/Active directory can be used to authenticate login requests, and optionally to retrieve additional
information about accounts, thereafter referred to as LDAP Search.

6.5.3.1.1 Configuring authentication

The following attributes must be set to configure LDAP/Active Directory authentication.

Property Name Description

enabled Whether the LDAP/Active Directory feature is
enabled.

Data Control Tower – Data Control Tower Home

Deployment – 104

Property Name Description

auto_create_users Whether DCT must automatically create account
records for successful authentication attempts
using a username which does not match any
accounts.
If this is disabled, an administrator must create a
DCT account with an ldap_principal attribute
matching the value from the LDAP/Active Directory
server prior to the first login attempt.
If this is enabled, any user with valid credentials in
the LDAP/Active Directory server can authenticate
to DCT, by default with an empty authorization set
(i.e not being able to view any data or perform any
action).

hostname The host name or IP address of the LDAP/Active
Directory server.

port Port of the LDAP/Active Directory server. This is
usually 389 for non SSL, and 636 for SSL.

enable_ssl Whether the connection to the LDAP/Active
Directory server must be performed over SSL. It is
highly advised to use SSL. Without SSL,
communication between DCT and the LDAP/Active
server can be intercepted.

insecure_ssl, unsafe_ssl_hostname_check,
trustore_file_name, truststore_password

The SSL protocol requires the LDAP/Active
Directory server to expose a certificate signed by a
Certificate Authority (CA) trusted by the JDK which
is running DCT. Refer to the dedicated section
below to see how to configure an Active Directory/
LDAP server of which certificate is not recognized.

[domains].msad_domain_name Microsoft Active Directory only: The DNS name of a
domain in the same forest as the accounts which
login. DCT will append the msad_domain_name to
the username provided at login to form a user
principal name (UPN).
Example: if the msad_domain_name is http://
mycompany.co and a user logs in with username
john, DCT will perform an LDAP request to the

http://mycompany.co

Data Control Tower – Data Control Tower Home

73 mailto:john@mycompany.co

Deployment – 105

Property Name Description

Active Directory server to authenticate
john@mycompany.co73.

[domains].username_pattern If the LDAP server is not Microsoft Active Directory,
the username_pattern is used to create a DN string
for user authentication. The pattern argument {0} is
replaced with the username at runtime.
Example: If the username_pattern is
uid={0},ou=People and a user logs in with
username john, DCT will perform an LDAP request
with DN uid=john,ou=People.

The LDAP/Active Directory Integration can be configured both via DCT UI and API. The below image shows
an example of how the configuration can be set in the UI as a way to Authenticate users, auto create new
users, as well as map group attributes for authorization within the DCT Access Control system.

mailto:john@mycompany.co
mailto:john@mycompany.co

Data Control Tower – Data Control Tower Home

Deployment – 106

The following example requests enable LDAP authentication over SSL with an Active Directory server at
address activedirectory.company.co using the us.company.co domain:

curl --location --request PUT 'https://<hostname>/v2/management/ldap-config' \

Data Control Tower – Data Control Tower Home

Deployment – 107

--header 'Content-Type: application/json' \
--header 'Accept: application/json' \
--header 'Authorization: apk <your API key>' \
--data-raw '{
 "enabled": true,
 "auto_create_users": true,
 "hostname": "activedirectory.company.co",
 "enable_ssl": true,
 "port": 636,
 "domains":[{
 "msad_domain_name":"us.company.co"
 }]
}'

6.5.3.1.2 Validating the configuration

Updating the LDAP/Active Directory configuration does not guarantee that the provided values are correct, as
validating those requires a user to authenticate to DCT. This can be achieved with the ldap-config/validate
API endpoints, using the credentials valid for the LDAP/Active Directory server. When provided with a
username/password combination, the ldap-config/validate API endpoint will authenticate with the LDAP
server. If the response status code is 200, the configuration is correct. Otherwise, the response code will be
400, and the response body will provide information to resolve the configuration problems. For example:

curl --location --request POST 'https://<hostname>/v2/management/ldap-config/
validate' \
--header 'Content-Type: application/json' \
--header 'Accept: application/json' \
--header 'Authorization: apk <your API key>' \
--data-raw '{
 "username": "<ldap-username>",
 "password": "<ldap-password>"
}'

Because of a defect in version 3.0.0 of DCT, the above request might fail with a response similar
to:

search failed for john.doe with search base null' ,search attribute

'null'

This indicates that authentication works, and search (see below) is not configured.

Data Control Tower – Data Control Tower Home

Deployment – 108

6.5.3.1.3 Login

One the configuration has been updated, accounts can login (via the UI or API) using the same UI form/API
endpoint they would be using for the local username/password authentication feature. For example:

curl -k --location --request POST 'https://<hostname>/v2/login' \
--header 'Content-Type: application/json' \
--header 'Accept: application/json' \
--data-raw '{
 "username": "<ldap-username>",
 "password": "<ldap-password>"
}'

When LDAP/Active directory is enabled, DCT first attempts to validate passwords with the LDAP/Active
Directory server, and falls back to local password authentication in case of failure. Enabling LDAP/Active
directory is thus a non disruptive operation for existing accounts.

In order to force a transition to LDAP/Active Directory only password authentication, the DCT administrator
must either update the account records to remove the password, or disable local password authentication
entirely.

6.5.3.2 Configure LDAP/Active Directory groups

In addition to being an authentication method, the LDAP/Active Directory integration can optionally also be
used to retrieve additional attributes about the accounts authenticating: first name, last name, email address
and group membership.

DCT only supports retrieving groups which are exposed as an attribute of the LDAP/Active Directory user
record. DCT can not fetch groups membership from group records at the LDAP/Active Directory, and thus
also does not support nested groups.

Group memberships are retrieved at authentication time, using the account credentials. DCT does not need
credentials of an LDAP/Active Directory administrator, but will only be able to retrieve group memberships if
LDAP/Active Directory users have the right to read the corresponding attribute.

This can be enabled by setting additional arguments to the domain API object.

Data Control Tower – Data Control Tower Home

Deployment – 109

search_base The Context name in which to search. Being
specific enables faster LDAP search.
To construct the search_base DN string according
to your LDAP/Active Directory server, using an
LDAP browser, navigate to a user, and then
construct the search_base DN in reverse order
from the User, up the folder hierarchy. For
example:
If a User DN is:
CN=some-user-
id,CN=Users,DC=mycompany,DC=co
The corresponding search base might be:
CN=Users,DC=mycompany,DC=co

email_attr Name of the attribute in the LDAP/Active Directory
server containing email addresses.
Example: mail

last_name_attr Name of the attribute in the LDAP/Active Directory
server containing last names
Example: sn

first_name_attr Name of the attribute in the LDAP/Active Directory
server containing first names
Example: givenName

group_attr Name of the attribute in the LDAP/Active Directory
server containing group(s) membership. This can
be a multi-valued attribute.
Example: memberOf

search_attr Name of the attribute in the LDAP/Active Directory
server of which value corresponds to the username
provided to the DCT login requests.
For Active Directory, this is usually
sAMAccountName.
Example: If the search base is
CN=Users,DC=mycompany,DC=co and the
search_attr is principalName, DCT will search for a
record with a principalName matching the
username provided to the login request under the
CN=Users,DC=mycompany,DC=co sub tree.

Data Control Tower – Data Control Tower Home

74 mailto:john@mycompany.co

Deployment – 110

1.

2.

3.

4.

object_class_attr Restricts search to records with an objectClass
matching this value.
Example: person

6.5.3.2.1 Active Directory example

The following requests enable LDAP authentication over SSL with an Active Directory server at address
activedirectory.company.co, using the us.company.co domain, and configures optional attributes to retrieve
first name, last name, email address, and group membership from the users sub-tree.

curl --location --request PUT 'https://<hostname>/v2/management/ldap-config' \
--header 'Content-Type: application/json' \
--header 'Accept: application/json' \
--header 'Authorization: apk <your API key>' \
--data-raw '{
 "enabled": true,
 "auto_create_users": true,
 "hostname": "activedirectory.mycompany.co",
 "enable_ssl": true,
 "port": 636,
 "domains":[{
 "msad_domain_name":"mycompany.co",
 "search_base":"CN=Users,DC=mycompany,DC=co",
 "email_attr": "mail",
 "first_name_attr": "givenName",
 "last_name_attr": "sn",
 "group_attr": "memberOf",
 "object_class_attr":"person",
 "search_attr": "sAMAccountName"
 }]
}'

With the above config, when a user logs in with username John, DCT will:

Authenticate with the Active Directory server using the user principal name john@mycompany.co74

and supplied password.

Search in the CN=Users,DC=mycompany,DC=co sub tree a record with objectClass=person and
sAMAccountName=john.

Create or update a DCT Account record with the attributes extracted from the Active Directory server.

For each group membership found in the memberOf of the Active Directory server, an account tag is
created with key=login_groups and value is the group name. These tags are protected (i.e cannot be
modified within DCT) and can be securely used to control access groups membership.

mailto:john@mycompany.co
mailto:john@mycompany.co

Data Control Tower – Data Control Tower Home

Deployment – 111

•

As explained above, the ldap-config/validate API endpoint can be used to validate that each of the attributes
corresponding to LDAP/Active Directory attributes.

6.5.4 SAML/SSO

The SAML 2.0 protocol allows DCT to delegate authentication to a SAML 2.0 compatible Identity Provider
(Active directory federation services, Azure active directory, Ping federate, Okta, OneLogin, etc.). It only
applies to web browser based interaction, and cannot be used for API access (scripting, integration).

Setting up SAML/SSO requires configuration changes both in the Identity Provider and DCT, so that trust can
be established across both products.

When using SAML/SSO, DCT will uniquely identify accounts by email address, so make sure that records at
the identity provider are configured with a unique email address.

DCT supports automatic account creation (or just in time account provisioning) when using SAML/SSO.
When automatic account creation is enabled, accounts are created automatically when users login for the
first time.

DCT allows group membership to be retrieved from the Identity Provider, which can be used to control
access control authorization within DCT via DCT Access Groups. Using Identity Provider group membership
allows DCT authorization to be managed per account group, and guarantees that authorizations in DCT
reflect the organization structure which is expressed by group membership of the identity provider.

SAML/SSO is not mutually exclusive with other authentication methods, so enabling SAML/SSO is not
disruptive (accounts configured with local password or LDAP/Active Directory authentication can still
authenticate). In order to switch to SAML/SSO exclusively as authentication method for web browser
interaction, perform the SAML/SSO configuration steps below and disable LDAP/Active Directory and
Username/Password authentication. Note that API Key based authentication cannot be entirely disabled, but
only administrators can create accounts with API keys.

6.5.4.1 Identity provider setup

Require that an administrator of the Identity provider used by your organization sets up a SAML 2.0
integration with DCT (an integration is sometimes called a Relying party trust, or an application).

The exact instructions are product specific, but the following input values must be provided:

Name Alternative name
depending on product

Value

Data Control Tower – Data Control Tower Home

Deployment – 112

•

•
•
•
•

•
•

•
•

•

Single Sign-on URL SAML Assertion Consumer
Service
ACS
Recipient URL
Destination URL
Relying party SAML 2.0
SSO
Service URL
Reply URL

https://<dct-hostname>/v2/saml/SSO

Audience URI SP Entity ID
Relying Party trust
identifier

Any value can be selected, as long as the
same value is set in the Identify Provider
configuration and DCT configuration. We
recommend:
https://<dct-hostname>

Binding POST

Protocol SAML 2.0 WebSSO protocol

The identity provider must be configured to include the email address as NameId attribute, and DCT will use
the email attribute as a unique identifier for users when connecting via SAML/SSO.

6.5.4.2 DCT SAML/SSO setup

Once the configuration has been performed at the Identity provider, use the saml-config API endpoint to
configure DCT accordingly. Copy the metadata from the Identity Provider using a web browser and provide it
directly to DCT.

The Identity provider (IDP) metadata is a standardized XML document providing the SAML Service Provider
(DCT) with the necessary information to verify the validity of incoming login requests and initiate a SAML/
SSO login flow.

If auto_create_users is enabled, DCT will create accounts automatically when they login with SAML/
SSO for the first time. If this is disabled, an administrator must create a DCT account with an email attribute
matching the value from the SAML/SSO Identity provider before they can login. When
auto_create_users is enabled, any user configured to authenticate via the Identity provider can

authenticate to DCT, by default with an empty authorization set (i.e not being able to view any data or
perform any action).

Without network access, provide the IDP metadata directly:

curl --location --request PUT 'https://<hostname>/v2/management/saml-config' \
--header 'Content-Type: application/json' \
--header 'Accept: application/json' \

Data Control Tower – Data Control Tower Home

75 https://stedolan.github.io/jq/

Deployment – 113

--header 'Authorization: apk <your API key>' \
--data-raw '{
 "enabled": true,
 "auto_create_users": true,
 "metadata": "<json-escaped-idp-metata-xml-blob>",
}'

6.5.4.3 Login

The SAML 2.0 protocol defines two login procedures: The Service Provider initiated flow starts by having
users point their web browser to https://<dct-hostname>/v2/saml/login to login, while the
Identity provider initiated flow starts at the Identity provider (details specific to Identity provider vendor). DCT
supports both flows. The SAML/SSO authentication method is not intended for API interaction, and cannot
be used with the Swagger UI.

After successful authentication, the web browser is redirected to the UI landing page and the the navigation
bar can be used to go to the desired page. The session expires 24 hours after login.

6.5.4.4 Troubleshooting

There was an issue in SAML authentication: The assertion cannot be used before <timestamp>

The above error message, which is accompanied by com.coveo.saml.SamlException: The assertion cannot
be used before <timestamp> error in the application logs, indicates that DCT was not able to validate the
timestamp of the authentication provided by the Identity Provider. This is usually due to the system clock of
the machine running DCT being incorrectly configured. Consider using NTP to maintain the machine’s clock
up to date.

There was an error fetching data

The above error message indicates that the current account does not have permission to view the data
displayed on the page. Remember that, while DCT creates accounts automatically upon login when
auto_create_users is enabled, by default accounts are created without any authorization and thus cannot see
any data. Review the section below to see how SAML/SSO group membership can be assigned automatically
at account creation.

The IDP metadata must be JSON escaped. On a terminal with ./jq75 installed, this can be
achieved with the following command: jq --slurp --raw-input <<< 'xml-metadata-

here'

https://stedolan.github.io/jq/
https://stedolan.github.io/jq/

Data Control Tower – Data Control Tower Home

Deployment – 114

6.5.4.5 Attributes mapping

As explained above, the only required attribute in the SAML Response (the message sent by the Identity
Provider to DCT during login) is the NameId attribute which must be configured to a unique email address.

In addition to this, DCT allows for first name, last name, and group membership attributes to be included. The
first and last names attributes will be stored as properties of the account object. For each group membership
found in the SAML response attribute, an account tag is created with key=login_groups and value is the
group name. These tags are protected (i.e cannot be modified within DCT) and can be securely used to
control access groups membership.

In other to enable these optional attributes, update the Identity provider configuration to include them in the
SAML response, and use the saml-config API endpoint to configure DCT with the name of the attributes
configured in the Identity provider:

curl --location --request PUT 'https://<hostname>/v2/management/saml-config' \
--header 'Content-Type: application/json' \
--header 'Accept: application/json' \
--header 'Authorization: apk <your API key>' \
--data-raw '{
 "enabled": true,
 "auto_create_users": true,
 "metadata": "<json-escaped-idp-metata-xml-blob>",
 "first_name_attr": "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/
givenname",
 "last_name_attr": "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/
surname",
 "group_attr": "http://schemas.xmlsoap.org/claims/Group"
}'

With the above configuration, and a SAML Response as the following produced by the Identity Provider
during login:

Data Control Tower – Data Control Tower Home

Deployment – 115

<?xml version="1.0" encoding="UTF-8"?>
<saml2:Assertion ID="id97923983167603821157180516" IssueInstant="2022-12-01T10:07:
12.856Z" Version="2.0"
 xmlns:saml2="urn:oasis:names:tc:SAML:2.0:assertion">
 <saml2:Issuer Format="urn:oasis:names:tc:SAML:2.0:nameid-format:entity">http:/
/www.idp-demo.com/exk1fupjwz1YcMo290h8</saml2:Issuer>
 <saml2:Subject>
 <saml2:NameID Format="urn:oasis:names:tc:SAML:1.1:nameid-
format:unspecified">john.doe@company.co</saml2:NameID>
 <saml2:SubjectConfirmation Method="urn:oasis:names:tc:SAML:2.0:cm:bearer">
 <saml2:SubjectConfirmationData NotOnOrAfter="2022-12-01T10:12:12.857Z"
 Recipient="https://localhost/v2/saml/SSO"/>
 </saml2:SubjectConfirmation>
 </saml2:Subject>
 <saml2:Conditions NotBefore="2022-12-01T10:02:12.857Z" NotOnOrAfter="2022-12-0
1T10:12:12.857Z">
 <saml2:AudienceRestriction>
 <saml2:Audience>https://dct-demo.delphix.com</saml2:Audience>
 </saml2:AudienceRestriction>
 </saml2:Conditions>
 <saml2:AuthnStatement AuthnInstant="2022-12-01T10:05:07.916Z" SessionIndex="id
1669889232855.2084756273">
 <saml2:AuthnContext>
 <saml2:AuthnContextClassRef>urn:oasis:names:tc:SAML:2.0:ac:classes:Pas
swordProtectedTransport</saml2:AuthnContextClassRef>
 </saml2:AuthnContext>
 </saml2:AuthnStatement>
 <saml2:AttributeStatement>
 <saml2:Attribute Name="http://schemas.xmlsoap.org/ws/2005/05/identity/
claims/givenname" NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-
format:unspecified">
 <saml2:AttributeValue
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:type="xs
:string">John
 </saml2:AttributeValue>
 </saml2:Attribute>
 <saml2:Attribute Name="http://schemas.xmlsoap.org/ws/2005/05/identity/
claims/surname" NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-
format:unspecified">
 <saml2:AttributeValue
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:type="xs
:string">Doe
 </saml2:AttributeValue>
 </saml2:Attribute>
 <saml2:Attribute Name="http://schemas.xmlsoap.org/claims/Group"
 NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:unspecified">
 <saml2:AttributeValue
 xmlns:xs="http://www.w3.org/2001/XMLSchema"

Data Control Tower – Data Control Tower Home

Deployment – 116

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:type="xs
:string">Dev-Team
 </saml2:AttributeValue>
 <saml2:AttributeValue
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:type="xs
:string">QA
 </saml2:AttributeValue>
 </saml2:AttributeStatement>
</saml2:Assertion>

Would automatically create or update a DCT account with the following properties:

{
 "id": 94,
 "username": "john.doe@company.co",
 "firstName": "John",
 "lastName": "Doe",
 "email": "john.doe@company.co",
 "tags": [
 {
 "key": "login_groups",
 "value": "Dev-Team"
 },
 {
 "key": "login_groups",
 "value": "QA"
 }
]
 }

6.6 Replace HTTPS certificate for DCT
By default, to enable HTTPS, DCT creates a unique self-signed certificate when starting for the first time.
This certificate and private key are configured in the values.yaml file under:

proxy:
 crt:<certificate_value>
 key:<private_key_value>

To use your own certificates, these default values need to be replaced. They are Base64 encoded values of
the certificate and key, respectively.

Data Control Tower – Data Control Tower Home

Deployment – 117

•

•

•

•

•
•
•

To generate the Base64 encoded value of the certificate:
cat my_cert_file.pem | base64 -w 0

To generate the Base64 encoded value of the key:
cat my_private_key.key | base64 -w 0

Generating a new TLS certificate and private key could require the assistance of your Security or IT
departments. A new key pair (public and private key) will need to be created, in addition to a certificate
signing request (CSR) for that key pair. Your IT department should be able to determine the correct
certificate authority (CA) to sign the CSR and produce the new certificate. The common name of the
certificate should match the fully qualified domain name (FQDN) of the host, as well as the FQDN as a
Subject Alternative Name (SAN).

After changing the crt and key values in values.yaml file. Run the HELM upgrade command:

helm upgrade -f values.yaml dct-services delphix-dct

After upgrading the helm chart, restart the proxy pod to pick the new certificates:

kubectl rollout restart deployment proxy -n dct-services

6.7 External database support

6.7.1 Overview

DCT uses a PostgreSQL database to store all the persistent data powering the application (engines, VDBS,
compliance jobs, accounts, permissions, etc.). By default, a PostgreSQL container image is packaged along
with the DCT application and deployed along other pods onto the Kubernetes cluster, storing its persistent
data into the gwdatabase-data persistent volume.

Alternatively, DCT can be configured to use an external PostgreSQL database instead, to which DCT
connects over TCP and can then run anywhere (typically outside of the Kubernetes cluster).

6.7.2 Requirements

Database type: PostgreSQL
Min supported version: 12.16
Max supported version: 14.10

External database support is only available for Kubernetes and OpenShift deployments. Docker
Compose installations are not eligible.

Data Control Tower – Data Control Tower Home

Deployment – 118

6.7.3 Setup

6.7.3.1 PostgreSQL database setup

The following databases must be created prior to connecting DCT: app, jobs, data-library, bookmarks and
masking.

A PostgreSQL user must be created for DCT, with either the admin privilege or ALL privilege on the above
databases. The following SQL script exemplifies the creation of required databases, granting privileges to a
pre-existing dct_user (role) user.

CREATE DATABASE "bookmarks";
GRANT ALL PRIVILEGES ON DATABASE "bookmarks" TO dct_user;

CREATE DATABASE "data-library";
GRANT ALL PRIVILEGES ON DATABASE "data-library" TO dct_user;

CREATE DATABASE "jobs";
GRANT ALL PRIVILEGES ON DATABASE "jobs" TO dct_user;

CREATE DATABASE "app";
GRANT ALL PRIVILEGES ON DATABASE "app" TO dct_user;

CREATE DATABASE "masking";
GRANT ALL PRIVILEGES ON DATABASE "masking" TO dct_user;

6.7.3.2 DCT setup

Edit the values.yaml file to set useExternalDatabase to true and also provide the dbHost , dbPort ,

dbUser , and dbPassword , then run the following.

masking is newly added database for masking service and is applicable only for release 12.0.0
and above

Quotes must be used to create or connect to the "data-library" databases, since its name
contains a hyphen (-). Creating the database with a different name (such as data_library) will
NOT work.

Data Control Tower – Data Control Tower Home

Deployment – 119

•

helm upgrade -f values.yaml dct-services delphix-dct

After upgrading the HELM chart, restart the pods to pick the changes:

kubectl rollout restart deployment data-library -n dct-services
kubectl rollout restart deployment data-bookmarks -n dct-services
kubectl rollout restart deployment jobs -n dct-services
kubectl rollout restart deployment gateway -n dct-services
kubectl rollout restart deployment masking -n dct-services

6.7.4 Backup and recovery

When using an external database, the gwdatabase-data persistent volume (created at default by DCT) to
store database data is not used. Backing up and restoring the external database is not managed by DCT.
Frequent or continuous backups are required, otherwise, DCT data will be lost.

The gateway-data persistent volume must still be backed up because it contains an encryption key,
which is used to encrypt sensitive data at the application-level before being sent to the database. A backup
of the external database cannot be restored successfully without a corresponding backup of gateway-

data , as DCT would not be able to decrypt some of the data in the database. The encryption key in

gateway-data does not change after having been initially created, so backups of it do not need to be
scheduled at the same time as database backups.

Previous versions of DCT required the aforementioned properties to be base64 encoded, but the
values must be plain text values, as shown in the following excerpt:
useExternalDatabase: true

dbHost: "database-host.company.co"

dbPort: 5432

dbUser: "dct_user"

dbPassword: "dct_user_password"

If the password is stored as exemplified above in the values.yaml file, make sure to store this file
in a secure location. Alternatively, set the value using the --set option flag in the HELM
upgrade command, as shown in the following excerpt:
helm upgrade -f values.yaml --set dbPassword=dct_user_password dct-

services delphix-dct

Data Control Tower – Data Control Tower Home

Deployment – 120

1.

2.

3.

4.

6.7.5 External database migration or upgrade

The external database can be migrated to a different host, and/or upgraded to a different version at any time,
as long the version requirements above are met. If the database is unavailable for a period of time, the DCT
application will temporarily fail (internal server errors on all API calls), but will recover automatically without
the need for a restart. However, in case of planned maintenance, upgrade, or migration, the following
procedure should be followed:

Stop (shutdown) the DCT application.

Upgrade or migrate the database.

If necessary, set the updated database properties in values.yaml, and run helm upgrade .

Start the DCT application.

6.7.6 DCT upgrade

Before upgrading to a new DCT version, review the documentation to identify if the external database version
is compatible. If the external database version is unknown, call the metadata-database API endpoint to
get the information.

curl -k --location --request GET 'https://<dct-server>/v3/management/metadata-
database' \
--header 'Accept: application/json' \
--header 'Authorization: apk <api-key>'

{
 "external": false,
 "version": "14.9",
 "database_product_name": "PostgreSQL",
 "major_version": 14,
 "minor_version": 9,
 "min_supported_major_version": 12,
 "min_supported_minor_version": 16,
 "max_supported_major_version": 14,
 "max_supported_minor_version": 9,
 "compatible": true
}

If the version of the external database is not compatible with the requirements of the DCT version being
upgraded to, follow the instructions in the External database migration or upgrade section above before
upgrading.

The selected PostgreSQL version to upgrade to must be compatible with both the currently
running DCT version and the upgrade version.

Data Control Tower – Data Control Tower Home

Deployment – 121

1.

2.

3.

4.

5.

6.

7.

1.

2.

3.

4.

5.

6.

7.

After the upgrade, verify if the external database is compatible with DCT by inspecting the compatible

property of the metadata-database API endpoint (as shown above).

6.8 DCT data backup, recovery, and migration

The following directions will guide you through a Data Control Tower (DCT) back, recovery, and migration.
They can be used for a “lift and shift” or a “blue-green” deployment. However, the backup and recovery steps
are standardized and can be applied in one-off scenarios as well.

This page refers to the two DCT servers as Initial and Destination.

6.8.1 Example deployment scenarios

An example of a “lift and shift” deployment could be:

Backup the running Initial server pre-upgrade.

Upgrade the Initial server to the desired version and confirm functionality.

Backup the Initial server post-upgrade.

Install a new Destination server as the same Initial server’s post-upgrade version.

Restore the Initial post-upgrade backup to the Destination server.

Restart the Destination services and confirm functionality.

Shutdown the Initial server or maintain it for further testing.

An example of a “blue-green” deployment could be:

Backup the running Initial server.

Install a new Destination server with the same Initial server’s version.

Restore the Initial backup to the Destination server.

Restart the Destination services and confirm functionality.

Upgrade the Destination server to the newer version and confirm functionality.

Redirect traffic to the Destination server.

Shutdown the Initial server or maintain it for a future blue-green deployment.

•
•

This method is only applicable for Kubernetes and OpenShift.
For Kubernetes, use the kubectl command prefix.
For OpenShift, use the oc command prefix.

Data Control Tower – Data Control Tower Home

Deployment – 122

1.
a.

2.
a.
b.

3.

4.

•

•

•

6.8.2 Prerequisites

The Initial (source) DCT server is up and running.
Referred to as svr_source in any CLI commands.

The Destination (target) DCT server is installed in a separate Kubernetes cluster.
It is the same version as the Initial DCT server when the backup is taken.
Referred to as svr_target in any CLI commands.

We can share backup files from Initial to Destination environments.

Sufficient access to perform various kubectl commands on both the Initial and Destination
clusters.

6.8.3 Directions

6.8.3.1 1. Backup

First, ensure the Initial DCT server is running, to take a successful backup. Then, run the following two
commands:

kubectl cp <srv_source-gateway-pod>:/data data --namespace <srv_source-namespace>

kubectl cp <srv_source-masking-pod>:/data masking_data --namespace <srv_source-
namespace>

kubectl exec -it <srv_source-database-pod> --namespace <srv_source-namespace> --
pg_dumpall -U postgres > postgres_db_all.sql

This will create three files: data , masking_data and postgres_db_all.sql :

data is the Gateway pod’s persistent volume containing various configuration information.

masking_data is the masking pod’s persistent volume containing various configuration
information.
postgres_db_all.sql is a complete database backup.

Data Control Tower – Data Control Tower Home

Deployment – 123

6.8.3.2 2. Restore

Ensure the Destination DCT server is running to restore successfully. In addition, make the
postgres_db_all.sql , data and masking_data files available to the Destination cluster in the

subsequent steps.

Then, run the following four commands:

kubectl cp data/encryption.key.sean <srv_target-namespace>/<srv_target-gateway-pod>:/
data --namespace dct-services
kubectl cp data/token_key_pair.sean <srv_target-namespace>/<srv_target-gateway-pod>:/
data --namespace dct-services

kubectl cp masking_data <srv_target-namespace>/<srv_target-masking-pod>:/data

kubectl cp postgres_db_all.sql <srv_target-namespace>/<srv_target-database-pod>:/tmp

for i in app bookmarks data-library jobs
{
 kubectl exec -it <srv_target-database-pod> --namespace <srv_target-namespace> --
psql -U postgres -c "drop database \"$i\" with (FORCE)"
}

kubectl exec -it <srv_target-database-pod> --namespace <srv_target-namespace> -- psql
-U postgres -f /tmp/postgres_db_all.sql

Finally, delete and restart the DCT pods:

for i in `kubectl get pods --namespace <srv_target-namespace> | awk '{print $1}' |
grep -v jobs-cleaner | egrep "gateway|data-library|jobs|data-bookmarks|masking"`
{
 kubectl delete pod $i -n <srv_target-namespace>
}

After deleting the pods, Kubernetes will automatically recreate them and absorb the new
database backup, and gateway volume data.

Data Control Tower – Data Control Tower Home

76 https://splunkbase.splunk.com/app/3743
77 https://faun.pub/logging-in-kubernetes-using-splunk-c2785948fdc0

Deployment – 124

6.8.3.3 3. Additional environment configuration

The HELM chart’s values.yaml contains information specific to your environment, such as certificates,
hostname, or resource limits. You can update this information before or after the migration process. The
standard installation and configuration process can be followed to update these values.

6.9 Exporting DCT logs to Splunk

6.9.1 Overview

This article provides some tips for configuring DCT (running on Kubernetes) to send logs to Splunk and
extract useful information in Splunk.

6.9.2 Setting up a Splunk instance

Authenticate with Splunk via the web portal and install the third-party Monitoring Kubernetes76 app directly
via the Splunk UI, then enable HTTP Event Collector in Splunk and save the HTTP Event Collector token for
future use.

6.9.3 Enable Splunk log forwarding

Once the Splunk instance is setup, follow the instructions to install Splunk logic in the Kubernetes cluster to
forward logs to Splunk. This blog post77 is a useful resources to understand the log collection and
configuration options.

git clone https://github.com/splunk/splunk-connect-for-kubernetes.git
cd splunk-connect-for-kubernetes/helm-chart/splunk-connect-for-kubernetes
edit values.yaml

Edit values.yaml, at the minimum the host property (hostname of the Splunk collector) and token (of the
HTTP Even Collector) must be set.

global:
 logLevel: info
 splunk:
 hec:
 # host is required and should be provided by user
 host: <insert-splunk-http-event-collector-hostname-here>
 # port to HEC, optional, default 8088
 port:
 # token is required and should be provided by user

https://splunkbase.splunk.com/app/3743
https://faun.pub/logging-in-kubernetes-using-splunk-c2785948fdc0
https://splunkbase.splunk.com/app/3743
https://faun.pub/logging-in-kubernetes-using-splunk-c2785948fdc0

Data Control Tower – Data Control Tower Home

Deployment – 125

 token: <insert-token-here>

Install the helm chart and and after a few minutes DCT logs will be visible in Splunk.

helm install splunk-connect-for-kubernetes . -f values.yaml --set splunk-kubernetes-
logging.fullnameOverride=splunk-logging

6.9.4 Search for events in Splunk

In the Splunk Cloud UI, via the “Monitoring Kubernetes” App, you can “search” for data sent by Kubernetes, as
exemplified in the screenshot below. The bootstrap API key can be found as shown.

The example screenshot below shows a search for \”nginx\”, with use of the “extract new fields” wizard on
the bottom left, which has Splunk parse the Nginx access logs. A regexp is used to name some of the fields
like ipaddress, endpoint, accountid, etc. The example runs a search to return API requests associated with
accountid.

Data Control Tower – Data Control Tower Home

78 https://download.delphix.com/folder/1144/Delphix%20Product%20Releases/DCT

Deployment – 126

•
•

6.10 Generating a support bundle

6.10.1 Find the “collect_bundle.sh” script

The support bundle tar file is available on the downloads site78.
Once the file is downloaded, untar the file to find the script.

dlpxuser@delphix:~/test$ tar -xzvf dct-support-bundle-1.0.1.tar.gz
x ./
x ./collect_bundle.sh
x ./README
x ./VERSION

https://download.delphix.com/folder/1144/Delphix%20Product%20Releases/DCT
https://download.delphix.com/folder/1144/Delphix%20Product%20Releases/DCT

Data Control Tower – Data Control Tower Home

Deployment – 127

•

•

•

•

•

6.10.2 Execute the “collect_bundle.sh” script when DCT is running in Kubernetes

Transfer the "collect_bundle.sh" script to the machine where you have permissions to execute
kubectl commands against the DCT pods.

Execute the “collect_bundle.sh” script, which assumes a Kubernetes deployment by default. The
script may need to run with "sudo", if root permissions are needed to run the kubectl commands.
If the namespace is not the default "dct-services", use the "-n" flag and pass the correct namespace.

dlpxuser@delphix:~/test/tools/support-scripts/$./collect_bundle.sh -n
<custom_namespace>
....
DCT support bundle collection started at Thu Jun 22 12:35:05 EDT 2023
Collecting logs from all DCT containers...
....

6.10.3 Execute the “collect_bundle.sh” script when DCT is running in Docker-
Compose

Transfer the "collect_bundle.sh" script to the machine where you have permissions to execute docker
commands against the DCT Docker-Compose application.

Execute the “collect_bundle.sh” script with the "-d" parameter. The script may need to run with "sudo",
if root permissions are needed to run the docker commands.

dlpxuser@delphix:~/test/tools/support-scripts/$./collect_bundle.sh -d
...
DCT support bundle collection started at Thu Jun 22 12:35:05 EDT 2023
Collecting logs from all DCT containers...
....

You must install the bash shell to generate a DCT support bundle, if it is not already.

You must install the bash shell to generate a DCT support bundle, if it is not already.

Data Control Tower – Data Control Tower Home

Deployment – 128

•
•
•
•
•
•

6.10.4 Find the generated support bundle tar file

The resulting support bundle will be located at dct-support-****.tar.gz , inside the current directory.

dlpxuser@delphix:~/test$ ls -ltr
total 316
-rw-r--r-- 1 65436 staff 104189 Feb 17 08:52 dct-support-<current_timestamp>.tar.gz

The support bundle tar file contains the following information:

DCT logs for all of the containers.
A java heap dump, .hprof, if one exists.
A java thread dump and memory stats.
The output of docker stats, if running in Docker-Compose.
The output of cpuinfo, meminfo, and mpstat for each container, if running in Kubernetes.
The output of kubectl get pods -o json for each container, if running in Kubernetes.

•

•

•

The collect_bundle.sh generates a support bundle from a DCT engine running in Docker or
Kubernetes.
The resulting support bundle will be at ./dct-support-****.tar.gz inside the
container.
The user must have privileges or permission to execute the docker or kubectl, commands in
order to generate the support bundle.

Data Control Tower – Data Control Tower Home

Data governance – 129

•
•
•
•

7 Data governance
DCT administration (see page 129)

Central governance workflows (see page 162)

Insight reports (see page 190)

Tabular customization support for DCT (see page 192)

7.1 DCT administration
DCT delivers a management layer on top of all connected Delphix engines through surfacing object
inventories, instrumenting all common Delphix operations, delivering a business metadata layer with tagging,
and using those tags to drive attribute-based access control. This provides the ability for administrators to
deliver a highly curated and secure Delphix experience for automation and end-users.

This section contains configurations handled under the Admin page in the DCT interface.

7.1.1 Operations in DCT

The Operations page is available under the Admin menu, showing a comprehensive list of all the DCT Jobs
across Delphix infrastructures. It only shows operations that the user has access to.

The Operations Monitoring feature allows users, such as Database Administrators (DBA), Developers, CISOs,
and Database Managers, to monitor system operations related to data virtualization and masking. Users can
view all operations and their statuses (completed, in progress, or error) on the Operations page.

This page will display operations based on the user’s read permission on the associated object. Click on a
specific operation to view additional details, including the related object name, the operation type, the current
status, a progress indicator (if in progress), and any additional metadata related to the operation.

Data Control Tower – Data Control Tower Home

Data governance – 130

Relevant details for the operation are shown, such as status with a graphical progress bar for running jobs,
type of job, target id (refers to the id of the object on which the operation has been performed), start time,
last updated time, etc. In versions 10.0.0 and above, a column shows the initiator of the operation.

The capture above represents an admin user view of the Operations page.

The capture below represents a non-admin user view of the same page.

The Operations page is accessible from Administration > Operations or the View All button on
the Operations Monitor Bar, which is described below.

Data Control Tower – Data Control Tower Home

Data governance – 131

Selecting a job will navigate to the Operations details page, which shows further details for that job, in
addition to a progress bar. The details include target id, error, and warning logs. Continuous Data operations
are the jobs initiated by the engine, as shown in the action sidebar.

The system will execute operations either manually by users or by automated tasks. If an operation
encounters an error, the error details can be viewed on the Operation Details page. Notifications based on
operation status changes will be covered in future brief and are not in the scope of this product brief.

Data Control Tower – Data Control Tower Home

Data governance – 132

•
•

•
•

•
•
•

•

•

•

•

•
•

7.1.1.1 Operations Monitor Bar

The Operations Monitor Bar appears at the bottom of pages to display user-initiated operations, with those
completed being auto-dismissed. Operations with errors or in progress remain until the user dismisses them
from the bar. In-progress operations display the operation type and object name. By default, the Operations
Monitoring Bar toggle button will be available on all pages of the application.

When logging into the application, the Operations Monitoring Bar will be hidden by default. There will be two
triggers for showing it:

Click on the icon (Operations Monitor Bar toggle button) in the top right.
Initiate an action like VDB refresh or compliance operation execution.

The bar has a View All button that navigates to the full Operations page and an actions menu, represented by
a vertical "more" icon, that displays available actions for that operation. Visibility of the bar can be toggled on
from the “memory” icon in the top right corner.

The Operations Monitoring Bar will show the following:

Operations initiated by the user.
Operations initiated during the current session.

Initially the Operations Monitoring Bar will always be empty upon login.
Operations marked as Monitor by the user in the full Operations page.
Operations currently running and failed.

7.1.1.1.1 Additional notes

Close and reopen the Operations Monitoring Bar as needed by using the toggle button located in the
top right corner (within the top banner).
The successfully completed operations will auto dismiss. In other words, when any operation
completes, the status changes from RUNNING to COMPLETED and it will be auto-dismissed/auto-
removed from the Operations Monitor Bar. For any other status, such as CANCELED, ABANDONED,
FAILED, SUSPENDED, TIMEOUT etc., auto dismiss will not occur.
Click the three-dot menu icon on any operation in the Operations Monitor Bar to dismiss and remove
any operation from the Operations Monitor Bar by selecting this action from the
When logging out and logging in again, the Operations Monitoring Bar will revert to being empty. The
application will not retain the state of the Operations Monitoring Bar between user sessions.
The View All button will navigate users to the Operations page.
The View Details button will navigate users to the Details page of the specific operation.

7.1.2 Tags

7.1.2.1 Tags management

DCT powers data governance with tags. These key-value pairs can be used to associate any business-level
data with any Delphix object, to drive greater intelligence in automation, administrative workflows, data
access, and reporting. Advanced search for tags is available.

Data Control Tower – Data Control Tower Home

Data governance – 133

Tags are individual attributes on every object exposed in DCT; from VDBs, to compliance jobs, and even
users. There are no limits on tag count per object and character limits are set for flexibility to enable robust
grouping.

7.1.2.2 Administrative tagging

Tags can be managed from the UI by selecting “View Tags” for a particular object on its global list page. The
below example shows the tag configuration screen for a dSource “AGDatabaseSQL2016” and multiple tags
have been added to characterize that particular object:

DCT tags enable complex searching to enable intelligent reports. A demonstration using the above example
dSource and using expression-based search to filter dSources with the {App Team: Alpha} tag.

Data Control Tower – Data Control Tower Home

Data governance – 134

7.1.2.3 Tags powering attribute-based Access Control

Tags also power the DCT permissions system for both Accounts (users) and Role Scopes (object
entitlements). The below example shows an Access Group (Alpha Team) with the Accounts tab on display.
Notice that the accounts tab has {App Team: Alpha} under “tag mapping”, which automatically attributes any
users with the {App Team: Alpha} tag.

The same goes for Scoped Roles under the “Roles” tab. The Alpha Team role has been mapped to the {App
Team: Alpha} tag and all dSources with that same tag are automatically attributed.

Data Control Tower – Data Control Tower Home

Data governance – 135

7.1.3 Access Control

Data Control Tower (DCT) fundamentally changes how application teams are governed across the Delphix
Platform to ease expansion and management burden. Previously, Delphix administrators were focused on
managing individual user-level access on each engine. This made it difficult as teams increased their data
set requirements. This inevitably led to more time managing engine access and not rolling out test data
management (TDM) practices. Now with DCT, all users are managed and access their data sets through a
centralized server. This makes it easier for administrators to manage the Delphix Platform and application
teams to utilize the self-service capabilities.

To take advantage of DCT’s new capabilities, Delphix administrators will implement a centralized Attribute
Based Access Control (ABAC) model. This is performed by consolidating permission management from the
engines to DCT, implementing Access Group policies, and assigning Object tags. The flexibility of this
approach ensures your company’s required security model can be maintained or even further refined.

The below picture attempts to show the shift in access models. In the original Engine Model, the engines
were isolated from one another. No access control mechanisms were shared between Engines. In the DCT
Model, Delphix administrators will manage applications teams directly through DCT. Those application
teams will log directly into DCT. Only administrators will log into the Engines for advanced usage.

Data Control Tower – Data Control Tower Home

Data governance – 136

7.1.3.1 Access model overview

Data Control Tower implements a model that you might find in other types of software called Attribute Based
Access Control (ABAC). This model is incredibly flexible but requires detailed configuration to perfect your
use cases. In our model, there are four entity types which are defined below. Understand each entity as they
are the foundational blocks of DCT’s ABAC model.

Entity Description Managed By

Accounts
(aka Users)

A single or shared user who can
authenticate with DCT (UI or API).

Create manually or via Identity
Provider (IdP), such as SSO or LDAP.
Accounts are independent of Delphix
Engines.

Access Groups A collection of accounts that share
one or more characteristics, such as a
Team or Permission set. Equivalent to
an Active Directory group.

Manually created. Populated manually
or via the ‘login_groups’ tag.

Roles and
Permissions

The collection of read, write, and
delete permissions forms a reusable,
named role.

Some roles are provided out of the
box, but Admins can build their own
from the available permissions.
Individual permissions are immutable.

Objects Units, such as VDBs, Bookmarks, and
Environments, that are managed
across the Delphix Platform.

Automatically identified by DCT from
the connected engines. Assigned to
Roles via various models. The CD and
CC Engines supply these objects.

Each entity is linked to another through manual or automated assignment. A manual (or direct) assignment
is a good approach for early implementations. However, it can be challenging to maintain as teams grow. As
an alternative, Tagging is suggested as it performs automatic assignments based on your custom
configuration. The below diagram shows how each entity is linked together. The directions below start with
Accounts creation to Access Groups with Role assignments and finish with Object mappings.

Data Control Tower – Data Control Tower Home

79 https://en.wikipedia.org/wiki/Principle_of_least_privilege

Data governance – 137

Understanding your team structure is imperative to identify the best access model. Usually, organizations
have existing groupings defined in their Identify Provider (IdP). These groups are typically organized in one of
two ways (a) a team dedicated towards a central goal (such as a product development team) or (b) a group
of individuals with similar permissions (such as Security Administrators). Understanding the purpose of each
group should be a guide in how the Roles and Permissions are designed. For example, the Alpha product
development team might have full permission to manage existing VDBs and create new bookmarks for their
team’s “Alpha” objects. On the other hand, Security Admins might have sweeping read and disable access
across the entire platform to ensure compliancy. Iterating through each Access Group and designing
custom, but re-useable roles, based on the Principle of Least Privilege79, will produce a streamlined rollout.

7.1.3.2 Accounts: Manual, LDAP/AD, or SSO/SAML

Goal: Import or create user accounts. Complete either the Manual or LDAP/SOO configuration.

https://en.wikipedia.org/wiki/Principle_of_least_privilege
https://en.wikipedia.org/wiki/Principle_of_least_privilege

Data Control Tower – Data Control Tower Home

Data governance – 138

Manual (User List)
Navigate to Admin > Accounts, click the “+ Account” button, and complete the form.

Manual accounts are great for testing user access or providing a service account. Take note of the
checkboxes by which you want this user to access DCT.

Data Control Tower – Data Control Tower Home

Data governance – 139

•
•

When you have specified all required values, select the “Create Account” button. By default, this user will
have no permissions.

LDAP/Active Directory or SSO/SAML (3rd Party Service)

Navigate to Admin > Authentication, click “Edit” for either LDAP/AD or SSO/SAML, and complete the form.
Ensure “Auto-create Users` is enabled. It can be disabled at any time.

If you need guidance on how to configure, follow the directions here:

LDAP/AD Directions (see page 103)

SSO/SAML Directions (see page 111)

Data Control Tower – Data Control Tower Home

Data governance – 140

Once configured, Accounts will be automatically created when a user successfully logs in.

Recommended: LDAP/Active Directory Domains

It is highly recommended that we also configure group membership during this stage. By defining the
metadata attributes in the option Domain fields, DCT can automatically assign users to Access Groups. If
configured correctly, you will see an automatically generated login_groups tag on recently logged-in
accounts. If an Account does not have the tag, then (a) the Domain configuration is invalid, or (b) they should
re-login. The login_groups tag is the only tag that cannot be specified on an Account manually.

LDAP/Active Directory Domain Groups Directions (see page 108)

This is functionally different from the old Engine model. Previously, the Account was created
manually before they could log in.

Data Control Tower – Data Control Tower Home

Data governance – 141

Example Account with the login_groups tag.

Please test these new accounts out by logging in on another browser. By default, these accounts will not
have any permissions and not see anything. In the following steps, we will give them access. In addition, if
configured, we’ll take advantage of login_groups or a custom tag.

7.1.3.3 Access Groups: Creation and account assignment

7.1.3.3.1 Goal: Create an Access Group and assign Accounts directly or through Tags.

Data Control Tower – Data Control Tower Home

Data governance – 142

Access Group Creation

 Next, navigate to the Admin > Access Groups tab, select the “+ Access Group” button, and complete the
presented form. As described previously, these groups are based on existing teams or users with similar
access. If you successfully configured the Active Directory’s Domain Groups, you can specify the
login_groups tag and value here. Or specify a custom Tag, such as "Team: Alpha".

You can also select Roles if you already know which should be applied. Otherwise, ignore it.

Submit the form once you are happy with your new group.

On completion, you will be presented with a page similar to the one below. Unfortunately, it’s empty. Let’s
add some associated Accounts now.

Unlike an Account, you can specify the `login_groups` tag on an Access Group shown in the
picture above.

Data Control Tower – Data Control Tower Home

Data governance – 143

Manual (Direct) Assignment

Select the “+ Manually Add Accounts” button, select the desired Account, and then “Add Account”.
Immediately, you’ll see it presented in the Associated Accounts list.

This is a good solution for quick management. However, it can be cumbersome as usage grows. Therefore,
we recommend tags!

Tag Assignment

Data Control Tower – Data Control Tower Home

Data governance – 144

First, navigate to the Admin > Accounts tab and select an existing Account. (Feel free to create another one!)
Once selected, add a custom Tag such as ‘Team: Alpha”. If one already exists on the Account, such as
“login_groups”, remember it.

Next, navigate back to the Access Group, select the Tag Mapping’s “Edit” button, and specify that same Key:
Value pair. It might look similar to the below picture.

Data Control Tower – Data Control Tower Home

Data governance – 145

In this example, the “Team: Alpha” and “login_groups: Alpha” were added through the Access Group’s Tag
Mapping widget. If configured successfully, your Access Group might look similar to the below picture. If you
remove the Access Group or Account’s tag, you will see Account automatically removed from this listing.

The “login_groups” tag functions identically to a custom tag within the Access Group. Again, the
only difference is that it's automatically assigned to the Account.

Data Control Tower – Data Control Tower Home

Data governance – 146

 This section taught us how to organize Accounts into different groups. This allows us to keep permission
sets separated. Feel free to experiment with new Access Groups, Tags, and Accounts. If you still need
additional pointers, review our Access Groups Documentation (see page 141).

Data Control Tower – Data Control Tower Home

Data governance – 147

7.1.3.4 Roles: Creation and assignment

Role Investigation and Creation

Navigate to the Admin > Roles tab. Here we see a list of DCT’s default Roles. Each role has its selection of
Permissions, such as Read VDB, Delete Bookmarks, Modify dSources, etc. Select “View” on the “devops” role
to see its permissions.

On the left-hand side, you can see a description, the Access Groups it’s currently a part of, and any assigned
Tags. On the right-hand side, is the complete list of permissions. For example, you can see here that the
“devops” role has “Manage Tags” and “Read” permissions on the CDBs objects. These various permissions
make up the Role’s identity.

Data Control Tower – Data Control Tower Home

Data governance – 148

Role Creation

Now we understand what it’s composed of, let’s create one. Navigate back to the Admin > Roles tab and
select the “+ Role” button. Give the Role a custom name, sample description, and add all the permissions you
want. In my simple example, I gave it the “VDBs > Read, Refresh, and Manage Tags” permissions. If you need
to grant permission for the entire category, select the header checkbox, such as “Access Groups” or
“Bookmarks”. If you only want a portion of that Object group, then click the little arrow icon to open up the
complete set of options and select the targeted permissions.

DCT’s default roles are immutable.

Data Control Tower – Data Control Tower Home

Data governance – 149

Once happy with your selection, click “Create”. You can modify your Permissions further on the presented
page.

Role Assignment

Roles, by themselves, provide no access. You must first assign them to an Access Group and a set of
Objects before their permissions are applied to an Account. Let’s do the first part now. Navigate back to the
Admin > Access Groups tab and “View” your previously created Access Group. Select the “Roles” subtab and
then “Edit” within the Roles widget.

Now you can assign default Roles, such as “devops”, and your newly created Role. You might recall that Role
assignment was also possible during Access Group creation. On Save, your Access Group might look like the
following.

Data Control Tower – Data Control Tower Home

Data governance – 150

1.

2.
a.
b.

3.

Immediately on assignment, all users within the Access Group will now have the permissions assigned to
them through these roles. (Since you are currently an Admin user, you must log in as your test Account user.)
However, you might notice that this user has full access to every object on DCT. The following section will
define the Role scoping modes and refine the Account Object access.

7.1.3.5 Objects: Refine permission to targeted objects

Every Access Group’s Role has its own set of Objects to which the permissions are applied. In the previous
section, we defined the permissions, and now we select the Objects. Objects are assigned in three different
modes. They are listed below with their method of application:

Simple - All Objects within DCT.

Scoped
Tags - Objects with matching Tags.
Direct - Objects manually assigned.

Advanced Scoped - Objects are assigned directly on the permission action (such as Read Bookmark,
Edit Bookmark, or Delete Bookmark) using Tags or Direct Assignment.

Data Control Tower – Data Control Tower Home

Data governance – 151

We will work through the first two in this post, Simple and Scoped. Advanced is easier to comprehend
afterward and a solid self-lead challenge. Before diving into this section, we recommend that your DCT server
has a handful of objects, such as Bookmarks or VDBs.

Simple

If you have been following the post steadily, you should have two Roles assigned to your Access Group. In
my example I have “devops” and “Limited Monitoring”. Both are given the “Simple” mode by default. We can
see the breadth at which this Role governs by selecting anywhere on its row and then the “Preview” button on
the right-hand side.

In this example, we select the “Preview” list for Bookmarks. It displays every Bookmark this role has access
to and the method to which they are applied. If we wanted to validate, we could log in as a user on this
Access Group and verify the permissions are applied. However, this is an easier way for Administrators to
confirm without switching logins. Because this is a “Simple” scope, every object is available, so this view is
not particularly intriguing. In the next part, we’ll refine our Role.

Data Control Tower – Data Control Tower Home

Data governance – 152

Scoped - Direct

Let’s change the mode to “Scoped” and target a subset of VDBs. On the Access Group > Roles tab, select the
Action > Edit button of your chosen Role.

A new wizard will appear with the Simple, Scoped, and Advanced Scoped options. Change the Role’s mode
from “Simple” to “Scoped”. Skip the “Add Tag Mappings” for now and select “Next” to move to “Add Objects”.
You will be presented with a long list of the objects available to DCT. This is where you can manually assign
specific DCT objects.

If you do not see any objects listed in the “Preview” widget, that object might not be available to
DCT. This could be because (a) engines are not connected, (b) the DCT-only object (such as
Bookmarks or VDB Groups) is not created, or (c) permissions are being enforced correctly.

Data Control Tower – Data Control Tower Home

Data governance – 153

Scroll down the Object type list and select VDBs. Next, choose the “Manually add VDBs” radio button and, on
the right-hand list, select a couple of VDBs. Feel free to add other available Objects too. When happy with
your selection, press the “Submit” button. This set of actions should change the Role’s “Simple” mode to
“Scoped” mode. Let’s verify by, again, opening the Role’s row, scrolling to your chosen Object Type, and
selecting the VDBs’ “Preview” button.

Data Control Tower – Data Control Tower Home

Data governance – 154

In my example, the same three VDBs I selected during permission configuration are shown here. If you want
to verify manually, log in as your other test user and confirm.

Scoped - Tags

Direct Assignment is a solid strategy for early onboarding and one-off requirements. However, as we expand
our consumption of Delphix, I suggest leveraging the Tagging mechanism to assign permissions quickly.
Similar to the Account & Access Group’s “login_groups” tag, we can assign tags to Objects and Roles to
immediately grant or restrict access. This is the recommended approach for a robust production
implementation.

Before jumping back into a Role, navigate to the top-level Data >VDBs tab. (If you don’t have any VDBs, select
another tab with available objects.) Here identify a test object and select the “Add Tags” button.

Any other Roles or Access Groups assigned to this user might affect its visibility. So if you do
this test, ensure it's not accidentally pulling in another permission set.

Data Control Tower – Data Control Tower Home

Data governance – 155

In this form, we assign a simple Key-Value pair. This pair helps govern access and maintain the organization
of the Delphix Platform. I’ve selected the “Team: Alpha” and “Environment-Dev” pairs in my example. Repeat
the process for a couple of other objects using similar or different Key-Value pairs. As I explained earlier in
this post, we can define and create an organizational structure in many ways. If you prefer other pairings,
please experiment, such as with Geography, Age, DB Type, or Importance.

Next, let’s take advantage of the created tags in the Access Model. Navigate back to your test Access Group,
select the Roles tab, and edit the Role we modified previously. Because “Scoped” is already chosen, press the
“Next” button, but this time stop on the “Add Tag Mappings” view. Similar to your Object’s tag assignment,
specify one or two of the same Key-Value pairs here.

Data Control Tower – Data Control Tower Home

Data governance – 156

In my example, this process will assign the Objects with the chosen “Team: Alpha” tag to this “devops” Role.
Thus, granting the set of permissions defined by “devops”. Finally, we can verify again by completing the
form and previewing the Role.

Data Control Tower – Data Control Tower Home

Data governance – 157

In my example, we can see a mix of objects assigned to this role through Tags and Manual (direct)
assignments.

At this point, challenge yourself by adding and removing tags to different Roles and Objects to understand
the flexibility of the ABAC model. If you need a deeper dive into Tags, read our documentation here. (see page
132)

7.1.4 VDB templates

For additional detail on VDB templates, visit the “Configuration Settings for Oracle VDBs” article
in the Continuous Data Engine documentation.

Data Control Tower – Data Control Tower Home

Data governance – 158

•

•

•

•

DCT has implemented a global VDB template system to centrally manage and apply VDB templates for any
and all VDB provisioning workloads. This feature works as an extension of the local VDB template system on
Continuous Data Engines as a means of enforcing VDB configuration standards and policies uniformly.

DCT Admins have the choice of either importing pre-existing VDB templates from a local engine or creating
net-new templates from within DCT.

7.1.4.1 Creating templates

Users can create Database Templates directly via DCT, which can then be used on VDBs across their
engines. The DCT API interface for creating templates is equivalent to that of on-engines, requiring a name
and sourceType, and optionally taking in a description and the list of config parameters. Here’s a sample
CURL command:

 curl -X 'POST' \
 '<https://<APPLIANCE_ADDRESS>/v2/database-templates'> \
 -H 'accept: application/json' \
 -H 'Authorization: <API_KEY>' \
 -H 'Content-Type: application/json' \
 -d '{
 "name": "vdb-config-template-1",
 "source_type": "OracleVirtualSource"
 "parameters": {"config1": "value1", "config2": "value2"}'}

This will result in a new DCT DatabaseTemplate object, which can then be viewed using the List/Get/Search
APIs.

7.1.4.2 Importing templates

Unlike many other Delphix objects, DCT is not automatically pulling in all the Database Templates from
registered engines and creating DCT objects out of them. It is often the case that users have already made
arrangements and have copies of their templates across their engines. DCT does not blindly import the
templates to avoid generating duplicates, leading users to consolidating and clean up. Instead, DCT provides
an import API that can be used to selectively choose which engines they wish to import their templates from,
along with an API to undo imports. The import workflow has a couple of things to be aware of:

The user cannot be selective of which individual templates to import from an engine. The import API
will pull ALL templates from that engine.
Import is allowed only one time per Engine. After an initial import, subsequent imports will be
blocked, and it is assumed that a user will use the DCT APIs to create more templates.
In the event that an import was done on accident or no longer desired, the undo import API can be
called to delete all the imported templates from the selected engine. This will result in the removal of
all DCT Database Templates that were created as a result of the import.
If an imported template is later used on a VDB running on a different engine than where it was
originally imported from, then the undo import flow is also prohibited, as DCT can no longer safely
delete a template that is in use elsewhere.

Import templates from the engine:

Data Control Tower – Data Control Tower Home

Data governance – 159

curl -X 'POST' \
 'https://<APPLIANCE_ADDRESS>/v2/database-templates/import' \
 -H 'accept: */*' \
 -H 'Authorization: <API_KEY>' \
 -H 'Content-Type: application/json' \
 -d '{
 "engine_id": "3"
}'

Undo the imported templates from engine:

curl -X 'POST' \
 'https://<APPLIANCE_ADDRESS>/v2/database-templates/undo-import' \
 -H 'accept: */*' \
 -H 'Authorization: <API_KEY>' \
 -H 'Content-Type: application/json' \
 -d '{
 "engine_id": "3"
}'

7.1.4.3 Using templates

DCT Database Templates can be used by specifying the template_id property at VDB provisioning time, or by
updating the template_id on an existing VDB. In either case, DCT will deploy the template to the respective
engine and bind the template with the VDB. When a DCT Database Template currently in use is updated or
deleted, those changes are propagated to the respective VDBs and engines.

Updating a VDB to use template_id:

curl -X 'PATCH' \
 'https://<APPLIANCE_ADDRESS>/v2/vdbs/1-ORACLE_DB_CONTAINER-1' \
 -H 'accept: application/json' \
 -H 'Authorization: <API_KEY>' \
 -H 'Content-Type: application/json' \
 -d '{
 "template_id": "319db966-961c-4977-a444-14d337aa3276"
}'

If a VDB has the same parameter called out in both VDB template and individual setting, the
value specified in the template will take precedence. The individual parameter value will only be
used if the VDB template is removed.

Data Control Tower – Data Control Tower Home

Data governance – 160

•

•

7.1.5 API metering

7.1.5.1 API metering instructions

DCT employs a per API consumption model, which requires API metering and periodic reporting to Delphix
Customer Success. To support reporting of API consumption, DCT offers an API consumption reporting
endpoint called, “api-usage-report”. This report will provide a list of all unique API endpoints and how often
they were used over the specified time period sorted by API and method.

Required inputs

File type: CSV or JSON (CSV file types are compatible with most spreadsheet-style software like
Excel or Google Sheets)
Start/end date: The default start date is “when DCT was installed” and the default end date is the
“time when the report was generated”.

7.1.5.1.1 Example cURL call

curl --location --request GET 'https://[Inser_DCT_Server]/v2/reporting/api-usage-
report/?end_date=2022-06-14T09:00-04:00&start_date=2022-06-01T00:00Z' \
--header 'Content-Type: application/json' \
--header 'Accept: text/csv' \
--header 'Authorization: apk 1.xxxxxxxx'

Example output

api_endpoint,api_method,api_count
"/v2/management/api-clients",GET,2
/v2/management/engines,GET,1
"/v2/management/engines/search",POST,1
"/v2/reporting/api-usage-report",GET,2

7.1.6 Client telemetry

DCT provides complete flexibility to clients on how to attribute their API calls. DCT captures the value
provided in an optional HTTP header (X-Dct-Client-Name) and standard, mandatory HTTP header

(User-Agent) for the purpose of attributing an API call. These values are stored as client_name and

Updates to a VDB template will propagate to all associated VDBs.

Data Control Tower – Data Control Tower Home

Data governance – 161

1.

2.

user_agent in the backend, and can be queried in the report. Below are some examples of how this can
be used.

Example one

Clients can view the report grouped on the basis of client name and API classification by providing a
group_by query parameter.

curl --location 'https://[Inser_DCT_Server]/v3/reporting/api-usage-report?
group_by=client_name%2Ckind' \
--header 'Authorization: <api_key>' \
--header 'Accept: text/csv'

api_endpoint,api_method,api_count,kind,client_name,user_agent,dct_version
,,2,management,client-1,,
,,5,management,client-2,,
,,20,management,client-3,,

The group_by parameter supports any combination of properties from api_endpoint , api_method ,

kind , client_name , user_agent , and dct_version . All properties function as their name

describes, where kind corresponds to API classification.

Example two

Clients filter the records for a list of particular client names, DCT versions, user agents, or classifications, by
providing corresponding query parameters.

Filter the API calls by client names.

curl --location 'https://[Inser_DCT_Server]/v3/reporting/api-usage-report?
group_by=client_name%2Ckind&client_name=client1%2Cclient2' \
--header 'Authorization: <api_key>' \
--header 'Authorization: apk <api key>

Filter the API calls by API classification.

curl --location 'https://[Inser_DCT_Server]/v3/reporting/api-usage-report?
group_by=client_name%2Ckind&api_metric_kind=automation' \
--header 'Authorization: <api_key>' \
--header 'Authorization: apk <api key>'

The API query parameters for this report are dynamic; depending on the number of records in
the backend and the granularity of the response requested, API response can be too large to be
handled by DCT. DCT can run out of memory and eventually crash if that is the case. To prevent
this from happening, this report has the maximum limit set to 10,000 records in the API

Data Control Tower – Data Control Tower Home

Data governance – 162

•
•
•
•
•
•

7.2 Central governance workflows
Data Control Tower delivers the management layer for all connected Delphix engines by virtue of its
converged architecture. As such, DCT has the ability to simplify everyday administration of common engine
admin tasks. This section will go over various how DCT exposes object relationships and reports on
meaningful use patterns under insights.

Managing engines (Continuous Data) (see page 162)

Managing dSources (see page 170)

Managing VDBs (see page 173)

Managing environments (Continuous Data) (see page 176)

Managing bookmarks (see page 178)

Replication management (see page 179)

7.2.1 Managing engines (Continuous Data)

7.2.1.1 Infrastructure

DCT provides a near real-time list of all connected Continuous Data engines and lists them in an aggregate
view. From the below screen, Delphix administrators can easily view and manage their engine connections.

Administrators can manage engine connects via the “Connect Engine” button on the top right corner. By
clicking this button, the below dialogue will appear, asking for connection details.

response. Thus, it is strongly recommended to always ‘limit’ the scope of the usage response by
filtering records on the basis of start_date and end_date query parameters, or on the
basis of client names and/or user agents.

DCT will access the engine as a registered user and, as detailed in the Deployment section,
requires both a username and password as well as admin-level access to the engine.

Data Control Tower – Data Control Tower Home

Data governance – 163

7.2.1.2 Engine overview

Individual engine details can be seen and acted upon by clicking down on a particular engine detailed view.
Once clicked, users will be sent to an "Overview" tab that provides relevant metadata related to the engine.
From the Actions menu, you can also Deregister an engine.

Deregistering or deleting an engine can also be done via the API with:
curl --location --request DELETE '<https://<DCT Host Name>:<Port>/v3/

management/engines/<ID or Name of the Engine to be deleted>' \

--header 'Authorization: apk <api key for authentication>'

Data Control Tower – Data Control Tower Home

Data governance – 164

7.2.1.2.1 Engine-connected environments

The "Environments" tab presents all environment connections to that particular engine.

7.2.1.2.2 Local dSources

The "dSources" tab presents all dSources associated with the selected engine. Clicking the "View" button will
link the user directly to the associated dSource page.

7.2.1.2.3 Local VDBs

The "VDBs" tab presents all VDBs associated with the selected engine. Clicking the "View" button will link the
user directly to the associated VDB page to take action.

Data Control Tower – Data Control Tower Home

Data governance – 165

7.2.1.2.4 Engine-based Operations access

Users are able to audit which users have access to this particular engine, what access group they belong to,
and the associated permissions that each user has on this engine. Admins are able to click on the "View"
button to access further details under the access control screen related to that specific user.

7.2.1.3 Infrastructure connection wizard

In the DCT interface, select the Home tab on the top navigation bar to see the Infrastructure Connections
landing view, which hosts the list of connections. In DCT versions before 9.0.0, these connections were listed
under the Environments section of the Data tab. Infrastructure Connections are the DCT equivalent of an
environment. The + Infrastructure Connections button will launch the wizard.

The following connections are available:

Data Control Tower – Data Control Tower Home

Data governance – 166

•

•
•

•

•

1.

2.

UNIX environment

Standalone/Cluster
Windows environment

Source/Target

Standalone/Cluster

7.2.1.3.1 Infrastructure connection wizard steps

Connection Name
Enter the Connection Name in the corresponding field and select the Associated Engine from the
dropdown.

Host & Server
Select the Host OS, Server Type, and Host Type (applicable to Windows).

1 Unix

Data Control Tower – Data Control Tower Home

Data governance – 167

3.

2 Windows

For Windows/Target/Standalone settings, a Delphix Connector download link has been added. Unlike
the engine, this link makes an API call to authenticate and download the connector exe file.

Settings
This step includes various connection setting options from basic items like the Host/IP Address and
SSH Port to advanced items like Discover SAP ASE, Provide my own JDK, and Set NFS. It includes a
Validate button to help confirm the environment user and prevents access to the next step if the
credentials are not valid.

Data Control Tower – Data Control Tower Home

Data governance – 168

a.
b.

4.

5.

A wide range of Login Settings are available for the OS user and to Discover SAP ASE (if applicable),
like username/password, username/public key, Password Vault, or Kerberos.

For vaults, HashiCorp and CyberArk vaults are supported.
The Kerberos login option only shows up when the user selects a Kerberos enabled engine as
the target for environment creation.

Java Development Kit (only applicable if selected in Settings)
Set the custom JDK path in the corresponding text field.

NFS (only applicable if selected in Settings)
Set NFS addresses in the corresponding text field (comma separated).

Data Control Tower – Data Control Tower Home

Data governance – 169

6.

7.

DSP (only applicable if selected in Settings)
Set DSP configurations in this step.

Summary
Shows a comprehensive summary of the selected options in the previous configuration steps. Shows
the type of login being used for both the OS user and SAP ASE (if applicable).

Data Control Tower – Data Control Tower Home

Data governance – 170

7.2.2 Managing dSources

7.2.2.1 Managing dSources

DCT provides the ability to view, search, sort, and filter all dSources within a connected Delphix ecosystem.
This page can be found under the Data section and is used to find and act upon all dSources, if they have the
appropriate access.

Data Control Tower – Data Control Tower Home

Data governance – 171

7.2.2.2 dSource overview

Individual dSource details can be viewed and acted upon by clicking down on a particular dSource's detailed
view. Once clicked, users will be sent to an "overview" tab that provides relevant metadata related to the
dSource.

7.2.2.3 Timeflow visibility

Users are able to view snapshot information by tabbing over to the "timeflow" section, which lists all
available snapshots via a vertical timeline. Users are able to modify snapshot retention periods by clicking on
the ellipsis located to the right of the relevant snapshot.

Data Control Tower – Data Control Tower Home

80 https://dct.delphix.com/docs/latest/api-references

Data governance – 172

•
•
•
•
•
•
•
•
•

7.2.2.4 Access auditing

Users are able to audit what other users have access to a particular dSource, what access group they belong
to, and the associated permissions that each user has on that particular dSource.

7.2.2.5 dSource linking

DCT 10.0.0 introduces the feature to link a dSource using DCT APIs. With the new API parameters exposed
from DCT, you can get the dSource linking defaults and use them to connect the dSource. The API
parameters are available in the API references80 article under:

BaseDSourceLinkSourceParameters
OracleDSourceLinkSourceParameters
OracleStagingPushDSourceLinkSourceParameters
AppDataDSourceLinkSourceParameters
ASEDSourceLinkSourceParameters
LinkDSourceResponse
LinkDSourceDefaultRequest
MSSQLDSourceLinkSourceParameters
MSSQLDSourceStagingPushLinkSourceParameters

As a prerequisite, Continuous Data Engines should be registered in DCT and should have non-linked sources
to be linked as a dSource.

DCT supports APIs for linking all types of databases. DCT does not have a GUI flow for these
APIs yet, which is why they are API only.

https://dct.delphix.com/docs/latest/api-references
https://dct.delphix.com/docs/latest/api-references

Data Control Tower – Data Control Tower Home

Data governance – 173

7.2.3 Managing VDBs

DCT provides the ability to view, search, sort, and filter all VDBs within a connected Delphix ecosystem. This
page can be found under the Data section and is used to find and act upon all VDB if they have the
appropriate access.

7.2.3.1 VDB overview

Individual VDB details can be seen and acted upon by clicking down on a particular VDB detailed view. Once
clicked, users will be sent to an "overview" tab that provides relevant metadata related to the VDB.

7.2.3.2 VDB active timeline

Actionable snapshots are listed on the "active timeflow" tab - from this page, users can refresh, enable,
disable, start, stop, delete, and create bookmarks on the VDB. Navigate to the Continuous Data
workflows section, then VDB operations in the UI, and see Active timeline UI for more details.

Data Control Tower – Data Control Tower Home

81 https://portal.document360.io/docs/timeline-history

Data governance – 174

7.2.3.3 VDB timeline history

A chronological history of all non-active timelines (commonly referred to as timeflows) is shown under the
"Timeflow History" tab. From this page, developers can curate their QA or Development work by renaming
timeflows to match their testing history. Developers also have the ability to access old timeflow data by
making a particular timeflow "active". Navigate to the Continuous Data workflows section, then VDB
operations in the UI, and see Timeline history UI81 for more details.

7.2.3.4 VDB bookmarks

A list of all bookmarks generated on the selected VDB can be found under the "Bookmarks" tab. This page
provides a list of all bookmarks allowing for general organization and actions (developers can use
bookmarks as a refresh or provision point from the API).

https://portal.document360.io/docs/timeline-history
https://portal.document360.io/docs/timeline-history

Data Control Tower – Data Control Tower Home

Data governance – 175

7.2.3.5 VDB access

Users are able to audit which users have access to this particular VDB, what access group they belong to,
and the associated permissions that each user has on that VDB. Admins are able to click on the "View"
button to access further details under the access control screen related to that specific user.

7.2.3.6 VDB templates

Importing and removing imported VDB templates from connected engines is an available action from the
VDB Config Templates page.

7.2.3.6.1 Import templates

To import a template, select the engines from the list in the import dialog.

Data Control Tower – Data Control Tower Home

Data governance – 176

7.2.3.6.2 Remove imported templates

To remove a template, select the engines from the list in the remove dialog.

7.2.4 Managing environments (Continuous Data)

7.2.4.1 Global environments list

DCT provides the ability to view, search, sort, and filter all Continuous Data environments within a connected
Delphix ecosystem. This page can be found under the Data section and is used to find and act upon all
environment connections.

Data Control Tower – Data Control Tower Home

Data governance – 177

7.2.4.2 Manage environments

Selecting a standalone environment in the Data page shows an ellipsis in the top right corner. When the
button is selected, the option to Enable/Disable, Refresh, or Delete the environment appears.

7.2.4.3 Edit host details

Selecting a standalone environment in the Data page shows an Edit Host option; it is not yet available for
cluster environments. When the button is selected, the host details window will open, showing the input
fields that can be edited. Select 'Save' to confirm the changes and close the window.

Data Control Tower – Data Control Tower Home

Data governance – 178

•

7.2.5 Managing bookmarks

7.2.5.1 Global Bookmarks List

DCT provides a near real-time list of all bookmarks across all VDBs and VDB-groups and their associated
VDB(s). From the below screen, Delphix administrators can easily view and manage their bookmark estate.

Support has been added for the creation of bookmarks for dSource snapshots, similar to VDB snapshots.
These properties have been added:

inherit_parent_tags is a new property added in the request payload. This indicates whether
this bookmark should inherit tags from the parent dataset.

Data Control Tower – Data Control Tower Home

Data governance – 179

•

•

•

dsource_ids is a new property in the create bookmark response. This indicates the list of dSource
IDs associated with this bookmark.

7.2.6 Replication management

7.2.6.1 Introduction

DCT 9.0.0 introduces the feature to differentiate between the replicated objects and original objects in case
of a parent and replicated engines, both are registered with DCT.

7.2.6.2 Prerequisites

One parent and one replicated engine is required with few replicated dSources and VDBs.

7.2.6.3 User interface

Convenient separation between the replicated objects(VDB/dSource/environments) and original
objects.

Users can filter the replicated object using the advanced filter.

Data Control Tower – Data Control Tower Home

Data governance – 180

•

•
•

All the actions on the replicated objects are disabled.

The status of the replicated objects are N/A.
On the VDB provisioning wizard, replicated objects(VDB/dSources) are marked as replicated.

Data Control Tower – Data Control Tower Home

Data governance – 181

1.

2.

3.

4.

7.2.6.4 API

Below are the list and search APIs, updated to return three additional fields (is_replica , namespace_id ,

namespace_name):

Sources
GET: /sources

GET: /sources/{sourceId}

POST: /sources/search

VDBs
GET: /vdbs

GET: /vdbs/{vdbId}

POST: /vdbs/search

dSources
GET: /dsources

GET: /dsources/{dsourceId}

POST: /dsources/search

CDBs
GET: /cdbs

GET: /cdbs/{cdbId}

POST: /cdbs/search

Data Control Tower – Data Control Tower Home

Data governance – 182

5.

6.

7.

8.

9.

10.

1.

2.

3.

VCDBs
GET: /vcdbs

GET: /vcdbs/{vcdbId}

POST: /vcdbs/search

Environments
GET: /environments

GET: /environments/{environmentId}

POST: /environments/search

Dataset-groups
GET: /groups

GET: /groups/{groupId}

POST: /groups/search

Timeflows
GET: /timeflows

GET: /timeflows/{timeflowId}

POST: /timeflows/search

Policies
GET: /virtualization-policies

GET: /virtualization-policies/{policyId}

POST: /virtualization-policies/search

Snapshots
GET: /snapshots

GET: /snapshots/{snapshotId}

POST: /snapshots/search

Below are the three fields added in response of these APIs:

is_replica : Boolean telling that this object id replicated or not.

namespace_id : This field will only come for replicated objects and is essentially the namespace

id of the replicated object.

namespace_name : This field will only come for replicated objects and is essentially the

namespace name of the replicated object.

Data Control Tower – Data Control Tower Home

Data governance – 183

•
•
•
•

7.2.6.5 Replication relationship

7.2.6.5.1 Overview

DCT 11.0 release adds a functionality to get the primary and replica objects for a given object in DCT.
Whenever DCT identifies that a replica object has been added to the engine, it creates a job to fetch the
primary object information from its source engine. In addition, when replica objects are updated with primary
object information, the primary objects are also updated with their children (replicas).

This feature requires that both source and target engines are registered in DCT.

7.2.6.5.2 Prerequisites

A running instance of DCT, two instances of Delphix Engines, and some of the dSource and VDBs on one of
those engines. A replication profile needs to be created from an engine that contains dSource and VDBs to
replicate to another engine.

7.2.6.5.3 Replication details

A replication details box will appear on the VDB or dSource tab showing the Source Engine and Source VDB/
dSource for replication.

7.2.6.5.4 API changes

New fields have been added in the following APIs:

GET - /v3/dsources
GET - /v3/dsources/{dsourceId}
POST - /v3/dsources/search
GET - /v3/vdbs

Data Control Tower – Data Control Tower Home

Data governance – 184

•
•

•
•
•
•

•

•

•

•

GET - /v3/vdbs/{dsourceId}
POST - /v3/vdbs/search

The new fields are as follows:

primary_object_id
primary_engine_id
primary_engine_name
replicas

replica_id

replica_engine_id

replica_engine_name

replica_namespace_id

7.2.6.5.4.1 VDB replica and primary object sample response:

curl --location 'http://localhost:8080/v3/vdbs' \
--header 'Authorization: apk {{authToken}}'

{
 "items": [
 {
 "id": "1-ORACLE_DB_CONTAINER-11",
 "database_type": "Oracle",
 "name": "VCDO_IF0",
 "namespace_id": "1-NAMESPACE-2",
 "namespace_name": "ip-10-110-221-77-1",
 "is_replica": true,
 "is_locked": false,
 "database_version": "19.3.0.0.0",
 "size": 0,
 "storage_size": 2778624,
 "engine_id": "1",
 "masked": false,
 "content_type": "PDB",
 "parent_timeflow_timestamp": "2023-10-16T10:11:02Z",
 "parent_timeflow_timezone": "America/New_York,EDT-0400",
 "environment_id": "1-UNIX_HOST_ENVIRONMENT-3",
 "ip_address": "10.43.89.210",
 "fqdn": "ora-src.dcol1.delphix.com",
 "parent_id": "1-ORACLE_DB_CONTAINER-8",
 "parent_dsource_id": "1-ORACLE_DB_CONTAINER-8",
 "group_name": "Untitled",
 "engine_name": "e1",
 "cdb_id": "1-ORACLE_SINGLE_CONFIG-24",
 "creation_date": "2023-10-16T10:38:39.05Z",
 "hooks": {
 "pre_refresh": [],

Data Control Tower – Data Control Tower Home

Data governance – 185

 "post_refresh": [],
 "pre_self_refresh": [],
 "post_self_refresh": [],
 "pre_rollback": [],
 "post_rollback": [],
 "configure_clone": [],
 "pre_snapshot": [],
 "post_snapshot": [],
 "pre_start": [],
 "post_start": [],
 "pre_stop": [],
 "post_stop": []
 },
 "config_params": {
 "_cdb_disable_pdb_limit": "TRUE",
 "audit_file_dest": "'/u01/app/oracle/admin/CDOMLOSR421F/adump'",
 "audit_trail": "'DB'",
 "compatible": "'19.0.0'",
 "diagnostic_dest": "'/u01/app/oracle'",
 "dispatchers": "'(PROTOCOL=TCP) (SERVICE=CDOMLOSR421FXDB)'",
 "enable_pluggable_database": "TRUE",
 "log_archive_format": "'%t_%s_%r.dbf'",
 "max_pdbs": "4098",
 "memory_max_target": "1342177280",
 "memory_target": "1342177280",
 "nls_language": "'AMERICAN'",
 "nls_territory": "'AMERICA'",
 "open_cursors": "300",
 "processes": "300",
 "remote_login_passwordfile": "'EXCLUSIVE'"
 },
 "mount_point": "/mnt/provision",
 "current_timeflow_id": "1-ORACLE_TIMEFLOW-11",
 "vdb_restart": false,
 "is_appdata": false,
 "primary_object_id": "1-ORACLE_DB_CONTAINER-6",
 "primary_engine_id": "1",
 "primary_engine_name": "e1"
 },
 {
 "id": "1-ORACLE_DB_CONTAINER-6",
 "database_type": "Oracle",
 "name": "VCDO_IF0",
 "is_replica": false,
 "is_locked": false,
 "database_version": "19.3.0.0.0",
 "size": 794755072,
 "storage_size": 32859648,
 "engine_id": "1",
 "status": "RUNNING",
 "masked": false,
 "content_type": "PDB",

Data Control Tower – Data Control Tower Home

Data governance – 186

 "parent_timeflow_timestamp": "2023-10-16T10:11:02Z",
 "parent_timeflow_timezone": "America/New_York,EDT-0400",
 "environment_id": "1-UNIX_HOST_ENVIRONMENT-1",
 "ip_address": "10.43.89.210",
 "fqdn": "ora-src.dcol1.delphix.com",
 "parent_id": "1-ORACLE_DB_CONTAINER-2",
 "parent_dsource_id": "1-ORACLE_DB_CONTAINER-2",
 "group_name": "Untitled",
 "engine_name": "e1",
 "cdb_id": "1-ORACLE_SINGLE_CONFIG-2",
 "creation_date": "2023-10-16T10:38:39.05Z",
 "hooks": {
 "pre_refresh": [],
 "post_refresh": [],
 "pre_self_refresh": [],
 "post_self_refresh": [],
 "pre_rollback": [],
 "post_rollback": [],
 "configure_clone": [],
 "pre_snapshot": [],
 "post_snapshot": [],
 "pre_start": [],
 "post_start": [],
 "pre_stop": [],
 "post_stop": []
 },
 "config_params": {
 "_cdb_disable_pdb_limit": "TRUE",
 "audit_file_dest": "'/u01/app/oracle/admin/CDOMLOSR421F/adump'",
 "audit_trail": "'DB'",
 "compatible": "'19.0.0'",
 "diagnostic_dest": "'/u01/app/oracle'",
 "dispatchers": "'(PROTOCOL=TCP) (SERVICE=CDOMLOSR421FXDB)'",
 "enable_pluggable_database": "TRUE",
 "log_archive_format": "'%t_%s_%r.dbf'",
 "max_pdbs": "4098",
 "memory_max_target": "1342177280",
 "memory_target": "1342177280",
 "nls_language": "'AMERICAN'",
 "nls_territory": "'AMERICA'",
 "open_cursors": "300",
 "processes": "300",
 "remote_login_passwordfile": "'EXCLUSIVE'"
 },
 "mount_point": "/mnt/provision",
 "current_timeflow_id": "1-ORACLE_TIMEFLOW-6",
 "vdb_restart": false,
 "is_appdata": false,
 "replicas": [
 {
 "replica_id": "1-ORACLE_DB_CONTAINER-11",
 "replica_engine_id": "1",

Data Control Tower – Data Control Tower Home

Data governance – 187

 "replica_engine_name": "e1",
 "replica_namespace_id": "1-NAMESPACE-2"
 }
]
 }
],
 "response_metadata": {
 "total": 2
 }
}

7.2.6.5.4.2 Sample response for dSource change:

curl --location 'http://localhost:8080/v3/dsources/search' \
--header 'Content-Type: application/json' \
--header 'Authorization: apk {{authToken}}' \
--data '{
 "filter_expression" : "engine_id EQ '\''1'\''"
}'

{
 "items": [
 {
 "id": "1-ORACLE_DB_CONTAINER-10",
 "database_type": "Oracle",
 "name": "CDOMSHSR6706PDB2-NO-CHILD",
 "namespace_id": "1-NAMESPACE-2",
 "namespace_name": "ip-10-110-221-77-1",
 "is_replica": true,
 "database_version": "19.3.0.0.0",
 "content_type": "PDB",
 "data_uuid": "46f1613b223b1dd5364bdc3ecfd2755d",
 "storage_size": 180355584,
 "creation_date": "2023-10-16T10:09:00.567Z",
 "group_name": "Untitled",
 "engine_id": "1",
 "source_id": "1-ORACLE_PDB_CONFIG-20",
 "engine_name": "e1",
 "cdb_id": "1-ORACLE_SINGLE_CONFIG-23",
 "current_timeflow_id": "1-ORACLE_TIMEFLOW-7",
 "is_appdata": false,
 "primary_object_id": "1-ORACLE_DB_CONTAINER-4",
 "primary_engine_id": "1",
 "primary_engine_name": "e1"
 },
 {
 "id": "1-ORACLE_DB_CONTAINER-12",
 "database_type": "Oracle",

Data Control Tower – Data Control Tower Home

Data governance – 188

 "name": "CDOMLOSR421FPDB2",
 "is_replica": false,
 "database_version": "19.3.0.0.0",
 "content_type": "PDB",
 "data_uuid": "837bbc258a479ff86dbce5656beeba2a",
 "storage_size": 236433920,
 "creation_date": "2023-10-17T10:19:19.496Z",
 "group_name": "Untitled",
 "enabled": true,
 "engine_id": "1",
 "source_id": "1-ORACLE_PDB_CONFIG-7",
 "status": "RUNNING",
 "engine_name": "e1",
 "cdb_id": "1-ORACLE_SINGLE_CONFIG-2",
 "current_timeflow_id": "1-ORACLE_TIMEFLOW-12",
 "is_appdata": false
 },
 {
 "id": "1-ORACLE_DB_CONTAINER-2",
 "database_type": "Oracle",
 "name": "CDOMLOSR421FPDB1",
 "is_replica": false,
 "database_version": "19.3.0.0.0",
 "content_type": "PDB",
 "data_uuid": "834a794e51ec096059922dc06625fb66",
 "storage_size": 245758976,
 "creation_date": "2023-10-16T10:08:35.425Z",
 "group_name": "Untitled",
 "enabled": true,
 "engine_id": "1",
 "source_id": "1-ORACLE_PDB_CONFIG-6",
 "status": "RUNNING",
 "engine_name": "e1",
 "cdb_id": "1-ORACLE_SINGLE_CONFIG-2",
 "current_timeflow_id": "1-ORACLE_TIMEFLOW-2",
 "is_appdata": false,
 "replicas": [
 {
 "replica_id": "1-ORACLE_DB_CONTAINER-8",
 "replica_engine_id": "1",
 "replica_engine_name": "e1",
 "replica_namespace_id": "1-NAMESPACE-2"
 }
]
 },
 {
 "id": "1-ORACLE_DB_CONTAINER-21",
 "database_type": "Oracle",
 "name": "DSOURCE-WITH-CUSTOM-POLICY",
 "is_replica": false,
 "database_version": "19.3.0.0.0",
 "content_type": "PDB",

Data Control Tower – Data Control Tower Home

Data governance – 189

 "data_uuid": "dd4216e99ee17e8a7afa97cce012aa42",
 "storage_size": 181809664,
 "creation_date": "2023-10-18T13:09:30.299Z",
 "group_name": "Untitled",
 "enabled": true,
 "engine_id": "1",
 "source_id": "1-ORACLE_PDB_CONFIG-11",
 "status": "RUNNING",
 "engine_name": "e1",
 "cdb_id": "1-ORACLE_SINGLE_CONFIG-3",
 "current_timeflow_id": "1-ORACLE_TIMEFLOW-21",
 "is_appdata": false
 },
 {
 "id": "1-ORACLE_DB_CONTAINER-4",
 "database_type": "Oracle",
 "name": "CDOMSHSR6706PDB2-NO-CHILD",
 "is_replica": false,
 "database_version": "19.3.0.0.0",
 "content_type": "PDB",
 "data_uuid": "46f1613b223b1dd5364bdc3ecfd2755d",
 "storage_size": 190537728,
 "creation_date": "2023-10-16T10:09:00.567Z",
 "group_name": "Untitled",
 "enabled": true,
 "engine_id": "1",
 "source_id": "1-ORACLE_PDB_CONFIG-10",
 "status": "RUNNING",
 "engine_name": "e1",
 "cdb_id": "1-ORACLE_SINGLE_CONFIG-3",
 "current_timeflow_id": "1-ORACLE_TIMEFLOW-4",
 "is_appdata": false,
 "replicas": [
 {
 "replica_id": "1-ORACLE_DB_CONTAINER-10",
 "replica_engine_id": "1",
 "replica_engine_name": "e1",
 "replica_namespace_id": "1-NAMESPACE-2"
 }
]
 },
 {
 "id": "1-ORACLE_DB_CONTAINER-8",
 "database_type": "Oracle",
 "name": "CDOMLOSR421FPDB1",
 "namespace_id": "1-NAMESPACE-2",
 "namespace_name": "ip-10-110-221-77-1",
 "is_replica": true,
 "database_version": "19.3.0.0.0",
 "content_type": "PDB",
 "data_uuid": "834a794e51ec096059922dc06625fb66",
 "storage_size": 226567680,

Data Control Tower – Data Control Tower Home

Data governance – 190

 "creation_date": "2023-10-16T10:08:35.425Z",
 "group_name": "Untitled",
 "engine_id": "1",
 "source_id": "1-ORACLE_PDB_CONFIG-22",
 "engine_name": "e1",
 "cdb_id": "1-ORACLE_SINGLE_CONFIG-24",
 "current_timeflow_id": "1-ORACLE_TIMEFLOW-9",
 "is_appdata": false,
 "primary_object_id": "1-ORACLE_DB_CONTAINER-2",
 "primary_engine_id": "1",
 "primary_engine_name": "e1"
 }
],
 "response_metadata": {
 "total": 6
 }
}

7.3 Insight reports

7.3.1 Central governance insights

DCT provides global reporting of real-time statuses. This section will break down all of the reports in the
Insights section of DCT.

7.3.2 VDB Inventory

The VDB Inventory report provides users with a comprehensive list of all the Virtual Databases (VDBs)
created in the DCT platform and their identification metadata.

7.3.3 dSource Inventory

The dSource Inventory report provides users with a comprehensive list of all the dSources created in the DCT
platform and their identification metadata.

7.3.4 Source Ingestion Metrics

The Data Source Ingestion Metrics dashboard is designed to help users find their virtualization source
ingestion metrics, which are often required for contract renewal purposes. The dashboard contains the data
sources and informs the user of the total size of that ingestion source.

All insight dashboards can be exported to CSV or JSON format.

Data Control Tower – Data Control Tower Home

Data governance – 191

7.3.5 Compliance Job Executions report

The Compliance Job Executions Report dashboard offers a comprehensive overview of the compliance jobs
executed within DCT, by presenting key metrics that enable stakeholders to assess the efficiency and
effectiveness of their data governance efforts.

7.3.6 Block Storage

This report provides users with a comprehensive view of storage usage across different engines. With this
report, users can easily identify the engines that are utilizing the most storage and take necessary action to
optimize storage usage.

7.3.7 Activity Audit Log summary

The Activity Audit Log Summary provides a high-level audit log summary capturing the utilization of DCT by
displaying user activity and the historical count of actions executed within the platform. This concise report
enables stakeholders to quickly identify trends, monitor user engagement, and assess the overall
effectiveness of data governance processes.

7.3.8 Compliance Engine Performance report

The Engine Performance dashboard provides users with a comprehensive view of performance information
for Delphix Continuous Compliance Engines. The performance metrics include system CPU utilization,
system memory usage, latency and throughput details for Disk protocols, and network throughput.

7.3.9 Data Engine Performance report

The Engine Performance dashboard provides users with a comprehensive view of performance information
for Delphix Continuous Compliance Engines. The performance metrics include system CPU utilization,
system memory usage, latency, IOPS, and network throughput details for Disk, NFS, and iSCSI protocols.

Data Control Tower – Data Control Tower Home

Data governance – 192

By default, a fix set of data columns are shown. Users have the flexibility to add or remove columns based on
their preferences.

7.4 Tabular customization support for DCT

7.4.1 Introduction

The Data Control Tower (DCT) integration of AgGrid helps provide a more dynamic and customizable data
interaction experience that enhances the way you interact with data tables in DCT.

Data Control Tower – Data Control Tower Home

Data governance – 193

1.

•

2.

•

7.4.1.1 Key enhancements

Seamless integration with AgGrid:

Dynamic data tables: AgGrid, a leading data grid tool, is being progressively integrated across
DCT. This transition promises a smoother, faster, and more responsive interaction with data.

User-centric customization:

Control at your fingertips: AgGrid enables you to dynamically show or hide columns in tables,
resize them as per your requirement, and rearrange them to suit your analysis process.

Data Control Tower – Data Control Tower Home

Continuous Data workflows – 194

8 Continuous Data workflows

8.1 DevOps TDM
DCT delivers all of the Continuous Data and developer operations necessary to power DevOps and Test Data
Management use-cases. This includes a suite of APIs to drive automation.

Using the above APIs, DCT can seamlessly integrate Delphix data into DevOps pipelines by providing a single
point of integration for a broad Delphix deployment.

Data Control Tower – Data Control Tower Home

Continuous Data workflows – 195

8.2 Developer experience
In addition to automation use cases, DCT provides the APIs and UI to power developer access to Delphix
data and common Delphix operations. This section will detail all of the major capabilities that make up this
revamped Delphix developer experience.

8.3 Self-service vs. DCT developer experience
Data Control Tower now provides a central experience for developers. Whether a developer prefers to
leverage Delphix via API, integration, or UI, DCT delivers the ability to quickly access data from any connected
Delphix engine, and the common capabilities to drive application development and testing.

Previously, Delphix offered a local addon application called Self-Service (or Jet Stream) that was attached to
applicable data engines. Self-Service provided an interface to access pre-provisioned datasets encapsulated
in "Self-Service containers", which would be made available by admin configuration.

Data Control Tower has taken the most common operations and use-cases, and has made this experience
accessible to developers via API, integration, and UI. This article will describe the key use-case and
operational overlap, as well as the differences between the local engine Self-Service experience and DCT's
developer experience.

Data Control Tower – Data Control Tower Home

Continuous Data workflows – 196

1.

2.

3.

1.

2.

3.

4.

8.3.1 Key similarities

Developer access to Delphix Data
The DCT developer experience is geared toward driving access to data, with all of the same time-
based operations to enable application development and testing. Operations (accessible via the API,
integration, or UI) include refresh, rewind, start/stop, enable/disable, bookmark, bookmark share, and
timeflow visibility/access.

Developer timeflow history
A common UI benefit in Self-Service is the ability to visualize past timeflows (see Timeline history (see

page 217) for more detail), which acts like a testing record. Every time a developer runs a test and
rewinds/refreshes, that past test results are stored in Delphix as a timeflow. DCT has both API and UI
instrumentation to make the visualization and curation of timeflows incredibly simple.

Data-as-Code
Developers can use DCT bookmarks to reference a point in time on a VDB (or group of VDBs) with a
developer-set retention period and human-readable name. This is valuable for development teams as
they evolve application code. Whenever a code change necessitates a new database schema, a
developer can bookmark a VDB that is formatted to work with that particular code branch. This
empowers development teams to always have access to a viable test data set for any and code
branches of an application.

8.3.2 Key differences

DCT delivers a central interface powered by its converged architecture
This means that developers have a single location to log into in order to access and manipulate their
virtual data sets.

User experience
The DCT developer experience UI has completely been reworked to make developer access to
Delphix data easy and intuitive. This experience shows itself in three UI tabs, Active Timeline,
Timeline History, and Bookmarks, that are located in each VDB's detail menu. This experience is
meant to be used by all Delphix users (admins and developers, especially) and will be tailored to the
individual based on the DCT Access Control system.

No template/container model
Previously, engine administrators needed to create templates encapsulating one or more related
VDBs and provision new VDBs into a developer-accessible container. This model required manual
administration that created bottlenecks for data access, which was especially prohibitive for
automation use-cases. The benefit of this model was two-fold: first, containers represented a
miniature sandbox for developers (using a Self-Service user role) and second, bulk operations could
be performed on all container-grouped VDBs while maintaining referential synchronicity, a valuable
attribute for integration testing.

DCT Access Control replaces the developer sandbox enabled by Self-Service containers
Developers simply log into DCT and can view and act upon data that they are entitled to access with

Data Control Tower – Data Control Tower Home

Continuous Data workflows – 197

5.

6.

7.

operations tightly bounded by their defined role. DCT's Access Control system has the ability to
automate both user membership of access groups and entitlement access via attribute-defined
scoped roles. In addition, roles can be customized in DCT such that granular permissions can be
extended and restricted down to both access group and user levels.

DCT VDB Groups replace the Self-Service container grouping mechanism
Currently only available via API, VDB groups enable the association of one or more VDBs for bulk
operations while maintaining referential synchronicity.

Time operations consolidation
The developer experience UI consolidates the many time-based operations across Continuous Data
and Self-Service (e.g. refresh, rewind, rollback, restore, reset, etc.) into a single operation; refresh.
From the DCT UI, clicking refresh will take users to a contextualized screen that simplifies time
operations by focusing on what timeline (and what time) the user would like to align to (parent, self,
or relative).

No "branching"
Branching in Self-Service introduced the notion of task-specific timelines, each with its own
associated sets of timeflows. This was a concept that was heavily tied to the "template/container"
model and is obviated by the DCT Access Control system that can enable gated provisioning access
to a developer. If a new timeline is needed for a separate task, you can provision a new VDB.

8.4 Creating and managing bookmarks

8.4.1 Create a Bookmark

Bookmarks are a critical developer tool that enables the creation of a namable time reference to a snapshot
of a VDB or VDB group. Bookmarks for single VDBs can be created from the DCT UI by selecting a VDB and
expanding into its detailed view. From the Active Timeline view, users can select the ellipsis in the top right
corner and "Create Bookmark".

DCT has a Delphix-supported integration with ServiceNow, which is commonly used as a
developer resource-request tool. Users can build custom developer-centric workflows with any
operation currently instrumented through the DCT API layer.

Data Control Tower – Data Control Tower Home

Continuous Data workflows – 198

Selecting the "Create Bookmark" button will open a window that enables bookmark naming, setting the
custom retention period for that bookmark, and assigning any relevant tags. Creating bookmarks this way
will initiate a new snapshot operation that will then be associated with that bookmark.

Bookmarks relating to a specific VDB can be found under the bookmarks tab in a VDBs details page. This
provides a curated list of actionable snapshots that represent anything from a relevant test result to a
transformed set of schema that can be associated with a specific branch of code.

8.4.1.1 Create a bookmark from an existing snapshot

Starting in version 7.0, the UI has an option to create bookmarks from existing snapshots.

On the VDB detail page, under the Active Timeline tab for each snapshot, a Create Bookmark action is
available. This opens a dialogue that shows a list of inputs for the user to select from, to create a bookmark.

Once the user clicks Create Bookmark in the dialogue, the bookmark will be created for that particular
snapshot (if all the mandatory fields are completed), else errors will be shown.

Data Control Tower – Data Control Tower Home

Continuous Data workflows – 199

Create a bookmark at the current data and time.

Create a bookmark based on the selected date and time.

Data Control Tower – Data Control Tower Home

Continuous Data workflows – 200

Create a bookmark based on SCN Number.

Data Control Tower – Data Control Tower Home

Continuous Data workflows – 201

8.4.2 Bookmark API Documentation

Some advanced bookmark operations are only available via API at present, formal documentation can be
found via DCT's swagger docs or the Developer resources section. This portion of the bookmarks
documentation will discuss examples of advanced use-cases.

8.4.3 Create a Bookmark at the current time for multiple VDBs

DCT (version 6.0 and above) can create bookmarks from existing snapshots. This is particularly useful for
users looking to migrate Self-Service bookmarks to DCT or any developer looking to retroactively create a
bookmark reference.

In cases such as integration testing, bundling multiple VDBs together to represent a complete set of data
that a complex application would run on is helpful. This API example shows how a single bookmark
reference can be created off of multiple VDBs, to provide a provision point for new testing sets or the
creation of a VDB Group that can be used to maintain referential synchronicity from that bookmark point.

curl -X 'POST' \
 'https://<APPLIANCE_ADDRESS>/v3/bookmarks' \
 -H 'accept: application/json' \
 -H 'Authorization: <API_KEY>' \
 -H 'Content-Type: application/json' \
 -d '{

Data Control Tower – Data Control Tower Home

Continuous Data workflows – 202

 "name": "MyBookmark1",
 "vdb_ids": [
 "1-ORACLE_DB_CONTAINER-2",
 "2-ORACLE_DB_CONTAINER-2"
]
}'

{
 "bookmark": {
 "id": "9e8c7223f1af4694a19ac2c2f7696eda",
 "name": "MyBookmark1",
 "creation_date": "2023-03-27T20:56:13.916857Z",
 "vdb_ids": [
 "1-ORACLE_DB_CONTAINER-2",
 "2-ORACLE_DB_CONTAINER-2"
],
 "retention": 30,
 "expiration": "2023-04-26"
 },
 "job": {
 "id": "8fe825f5635d45299915c3cb88a17623",
 "status": "PENDING",
 "type": "BOOKMARK_CREATE",
 "target_id": "9e8c7223f1af4694a19ac2c2f7696eda",
 "start_time": "2023-03-27T20:56:14.363549Z"
 }
}

8.4.4 Creating a bookmark from a chosen timepoint

Now bookmarks can be created at a chosen snapshot timepoint using new properties in the request payload.
Some properties are mutually exclusive, so be sure to use a valid request payload.

Here are some examples of a valid request payload:

{
 "name": "my-bookmark-123",
 "vdb_ids": [
 "vdb-123"
],
 "location": "112233",
 "expiration": "2021-07-04",
 "retain_forever": false,

These API calls will return a DCT job to track the creation process. This job ID can then be used
to poll the status via the jobs API. Example response:

Data Control Tower – Data Control Tower Home

Continuous Data workflows – 203

 "tags": [
 {
 "key": "key-1",
 "value": "value-1"
 },
 {
 "key": "key-2",
 "value": "value-2"
 }
],
 "make_current_account_owner": true
}

{
 "name": "my-bookmark-123",
 "timeflow_ids": [
 "timeflow-1"
],
 "location": "112233",
 "expiration": "2021-07-04",
 "retain_forever": false,
 "tags": [
 {
 "key": "key-1",
 "value": "value-1"
 },
 {
 "key": "key-2",
 "value": "value-2"
 }
],
 "make_current_account_owner": true
}

{
 "name": "my-bookmark-123",
 "timeflow_ids": [
 "timeflow-1"
],
 "timestamp": "2021-05-01T08:51:34.148000+00:00",
 "expiration": "2021-07-04",
 "retain_forever": false,
 "tags": [
 {
 "key": "key-1",
 "value": "value-1"
 },
 {
 "key": "key-2",
 "value": "value-2"

Data Control Tower – Data Control Tower Home

Continuous Data workflows – 204

•

•

•

•

•

•

•

•

 }
],
 "make_current_account_owner": true
}

Properties

timestamp

location

timestamp_in_database_timezone

timeflow_ids

Rules

timestamp , location and timestamp_in_database_timezone are mutually exclusive.

If any of the properties from timestamp , location and

timestamp_in_database_timezone are provided then:

At least one property for vdb_ids or timeflow_ids must be provided.

The snapshot_ids property is not allowed to be set.

8.5 VDB operations

The VDB operations UI serves as an actionable command center for admins and developers. With this UI,
users can migrate from using the local engine UI to leveraging DCT to do their daily VDB-related work. This
encompasses both continuous data as well as any developers leveraging Delphix Self Service.

The core benefit of this UI experience is the breadth of access coupled with DCT's access control system.
Using both together, a user can access and act upon any data on any connected engine within the
boundaries of the entitlement and permissions set by the admin-driven access control system.

The developer experience will continue to see investment and additional capabilities over the
next few releases.

Data Control Tower – Data Control Tower Home

Continuous Data workflows – 205

To access the VDB operations UI, users only need to log into DCT and select the detailed view of any
particular VDB.

From there, users can perform common operations such as refresh, rewind, and bookmark using the Active
Timeline tab. Developers have additional functionality with the Timeline History tab that exposes non-active
timelines (also known as timeflows).

Users will only be able to see VDBs if they have been granted access via the Access Control
system.

Data Control Tower – Data Control Tower Home

82 https://cd.delphix.com/docs/latest/provisioning-a-postgresql-vdb
83 https://cd.delphix.com/docs/latest/unstructured-files-and-app-data

Continuous Data workflows – 206

•
•

•

•

•
•

•

•

•
•

•
•
•

•

•

•

•

8.5.1 VDB provisioning wizard

Users can provision VDBs from the DCT UI using the Provision VDB button located under the action button
on a VDB details page.

8.5.1.1 Supported database platforms

Oracle Multi Instance (Single Tenant)
Oracle Multi Instance (Multi Tenant) with linked vCDB

TDE is supported for Oracle versions greater than or equal to 12.2.

Only vCDBs with database versions greater than or equal to 12.1.0.2 can be linked.

Auto VDB restart is supported for Oracle versions greater than or equal to 12.1.0.2.
Oracle Single Instance (Multi Tenant) with linked vCDB

TDE is supported for Oracle versions greater than or equal to 12.2.

Only vCDBs with database versions greater than or equal to 12.1.0.2 can be linked.

Auto VDB restart is supported for Oracle versions greater than or equal to 12.1.0.2.
MSSQL Multi Instance

Drive letters are not supported and are set to default values.
SAP ASE
AppData

AppData is used for connecting with other databases like Postgres, SAP HANA, etc. by
uploading the plugin. Refer to the Provisioning a PostgreSQL VDB82 page for more details.

vFiles

Refer to the Unstructured files and app data83 page for more details.

Extending the developer experience capabilities in DCT, users can now provision MSSQL single instance
databases or Oracle single instance multi-tenant databases with linked CDB data platforms from the user
interface, using an intuitive wizard workflow. Located on the VDB page is a Provision VDB button that opens
the provisioning wizard. (Note: non admin users will only be able to see provisionable sources (dSources
and/or VDBs), environments, and engines to which they are authorized to see and act upon).

8.5.1.2 Step examples

The provisioning wizard will walk through the following steps:

Source: search and select either a dSource or VDB to provision from.

https://cd.delphix.com/docs/latest/provisioning-a-postgresql-vdb
https://cd.delphix.com/docs/latest/unstructured-files-and-app-data
https://cd.delphix.com/docs/latest/provisioning-a-postgresql-vdb
https://cd.delphix.com/docs/latest/unstructured-files-and-app-data

Data Control Tower – Data Control Tower Home

Continuous Data workflows – 207

•

•

•

•

Provision Point: three options for a provision point, similar to a refresh point.

A selected snapshot

A specific timestamp (closest snapshot to the timestamp)

A location ID/number (closest snapshot to the location number)

Data Control Tower – Data Control Tower Home

Continuous Data workflows – 208

•

•

•

Target Environment: shows compatible environments with compatible repositories, and can
optionally provide privileged credentials.

Target Configuration: should be prefilled with default configurations. One thing to note here are the
tags which are additive when “Include Tags from Parent” is checked, and you wouldn’t immediately
see the tags from the parent in the editor. Tags are added when the Include Tags from Parent box is
checked, you would not immediately see them from the parent in the editor.

Users can also select the engine group and register listeners by expanding the advanced
section below. In DCT, it is recommended to use tags instead of engine groups.

Data Control Tower – Data Control Tower Home

Continuous Data workflows – 209

•

•

•

The Target Configuration screen will present different options depending on the chosen
Source.

vCDB Configure Parameters: Applicable to Oracle Single Instance (Multi Tenant) with linked vCDB.

Policies: choose a snapshot policy.

Data Control Tower – Data Control Tower Home

Continuous Data workflows – 210

•

•

Masking:

Hooks: Delphix users now have the ability to add custom hooks to a VDB at the time of provision (as
part of the provision wizard UI) and update them under a VDB detail page, so that they will execute
during refresh operations. A Hooks section in the Summary page shows a list of all the hooks
configured (if any). Hooks can be modified in the details page after creation.

Data Control Tower – Data Control Tower Home

Continuous Data workflows – 211

• Summary: review the selections that have been made. In 10.0 and above, a hooks header has been
added to the Summary page that shows a list of all the hooks configured for Hook Operations while
provisioning a VDB (if this was configured).

Data Control Tower – Data Control Tower Home

Continuous Data workflows – 212

•

•
•

•

•

•

•

•

8.5.1.3 Limitations

TDE and Auto VDB restart are only supported for Oracle version 12.2 or higher.

8.5.2 VDB refresh

8.5.2.1 Overview

The VDB refresh wizard in the Data Control Tower UI offers important engine refresh operations like:

Self-refresh by snapshot, timestamp, or location

Refreshes a VDB back to a point in its own history.
Refresh to parent by snapshot, timestamp, or location

Data is pulled from the VDB provision parent (the dSource or VDB from which the VDB was
provisioned).

Refresh to relative by snapshot, timestamp, or location

Allows selection of data from either the origin dSource of the VDB (which could be the
immediate parent, or parent of parent, etc.) or any VDB sharing the same origin dSource
(which could be parent, child, sibling, or similar relationship).

Refresh to bookmark snapshot

Refreshes a VDB to a compatible bookmarked snapshot.

8.5.2.2 User interface

The self-refresh by snapshot operation can be initiated as an action from the VDB's own active timeline or
timeline history view, using the action menu for snapshots.

In order to refresh from a dSource or VDB, the account performing the action must have the
REFRESH permission on both the VDB being refreshed and the dSource (or VDB) from which the
data is being refreshed.

Data Control Tower – Data Control Tower Home

Continuous Data workflows – 213

•

•

All three refresh types can be performed by opening the refresh wizard on the VDB details page. In the first
step, select the refresh source:

Next, select the snapshot or point in time to refresh to:

For self-refresh, a timeflow from the VDB’s own history must be selected, and then a snapshot within
the selected timeflow.
For parent refresh, a timeflow from the VDB’s provision parent’s history must be selected, and then a
snapshot within the selected timeflow.

Data Control Tower – Data Control Tower Home

Continuous Data workflows – 214

• For relative refresh, first a relative dSource or VDB must be selected, then a timeflow, then a
snapshot.

For all three refresh types, review the summary page once configurations are complete, then click submit:

8.5.2.2.1 Refresh to Bookmark

Bookmark is available as a Select Refresh Source option in the refresh wizard, which allows you to refresh
from compatible bookmarks. Choose a bookmark from the list and click Next.

Refreshing happens asynchronously and takes a various amount of time. The DCT UI does not
currently show asynchronous job progress or errors, please refer to the engine UI for this
function.

Data Control Tower – Data Control Tower Home

Continuous Data workflows – 215

You can also refresh from a particular bookmark under the VDB details page, via the Bookmarks tab. Choose
a bookmark from the list as the one to refresh from, then click the Actions menu and select Refresh to
Bookmark.

Data Control Tower – Data Control Tower Home

Continuous Data workflows – 216

•

•
•
•

8.5.3 Active timelines

8.5.3.1 Active Timeline View

Active Timeline can be found by selecting “details” for any VDB located on the VDB list page in DCT and
selecting the “Active Timeline” tab. This view serves as an operations console for any user with the
appropriate entitlements to see and act upon the identified VDB granted by the DCT access control system.

This view shows a vertical timeline-based representation of all actionable points of interest (snapshots) for
that VDB. The snapshot list is chronologically grouped over blocks of time to easily identify relevant
snapshots to act upon. Once the right snapshot is found, users can access a contextualized action menu by
selecting the corresponding ellipsis to the relevant snapshot.

Alternatively, users can perform common Continuous Data actions via the ellipsis in the top right of the
Active Timeline screen. This menu will offer VDB-wide, generalized operations including:

Refresh: This is a generalized operation to realign your VDB's timeline with another. More information
can be found in the Refresh a VDB (see page 212) article.
Start/Stop: A way to manage target host bandwidth.
Enable/Disable: An administrative operation required for upgrades/migrations.
Create Bookmark: Create a special reference to a snapshot that has a custom name and retention
period.

Contextual snapshot menu: By selecting the ellipsis next to the VDB of interest, users can refresh
to a snapshot or create a bookmark (a nameable and shareable snapshot reference.

Data Control Tower – Data Control Tower Home

Continuous Data workflows – 217

•

•

•

•

8.5.3.2 Additional notes

Refresh using the DCT UI
Data Control Tower has consolidated all contextualized time-based operations (e.g. refresh, rewind,
rollback, restore, reset, etc.) across Continuous Data and Developer products into a general "Refresh".
By clicking refresh, users will be prompted on what timeline they would like to align: Parent, Self, or
Relative. From there, users will be taken to a wizard that will give relevant timeline options and points
in time to perform the refresh.
Start/Stop
Starting and Stopping are geared toward bandwidth management in a target environment. Stopping a
VDB will place it in stasis such that it can't be accessed, but also won't consume bandwidth. Starting
it back up will re-enable it for regular activity.
Enable/Disable
Enabling and Disabling are geared toward administrative operations such as VDB migration or
upgrade. Disabling a VDB removes all traces of it, including any configuration files, from the target
environment to which it was provisioned. Re-enabling the VDB will restore those configuration files.
Create Bookmark
Bookmarks serve as a human-referenceable representation of time that can work for a single VDBs or
VDB groups. Bookmarks also have the capability to be shared (Refresh to relative in the Refreshing a
VDB (see page 212) article). From the top level menu, users will be able to name the reference and set a
unique retention period.
Bookmarks do not appear in the Active Timeline, to access existing bookmarks, users will have to
navigate to the "Bookmarks" tab on the VDB detail view.

8.5.4 Timeline history

8.5.4.1 Timeline History view

The timeline history view can be found by selecting “details” for any VDB located on the VDB list page in DCT
and selecting the “Timeline History” tab. This view serves as a developer-centric console that shows the
complete history of a VDB including non-active timelines, which is a critical resource for developers as these
can contain information like past test results. Using this page, developers can curate and access the

Data Control Tower – Data Control Tower Home

Continuous Data workflows – 218

complete chronology of their testing efforts with operations such as renaming individual timeflows, make
active, refresh to snapshot, and create bookmark to drive organization and access.

8.5.4.2 The Timeline History user interface

If entitled via the DCT Access Control system, developers can see and act upon VDBs in the VDB list view
using the timeline history tab under "details". The timeline history UI is comprised of a vertical timeline-based
representation of all actionable points of interest (snapshots) for that VDB. The snapshot list is
chronologically grouped over blocks of time to easily identify relevant snapshots to act upon. Once the right
snapshot is found, users can access a contextualized action menu by selecting the corresponding ellipsis to
the relevant snapshot.

Data Control Tower – Data Control Tower Home

Continuous Data workflows – 219

8.5.4.3 Non-active timelines

Non-active timelines (often referred to as “timeflows” in Self-Service) are a critical aspect of how Delphix
Virtualization works and an important Developer Tool. Whenever a time-based operation takes place, the
previous timeline (and associated data) becomes non-active and a fresh timeline takes its place.

For developers, having the ability to catalog (name and tag) and reference past timelines is a critical aspect
of application development such as performing ad hoc code validation or manual testing. The timeline
history UI in DCT provides a home for single VDB visibility of all accessible timelines (note: timeline
availability is controlled through capacity management and snapshot retention policies).

8.5.4.4 Time concepts within the Timeline History Tab

DCT’s new user interface highlights different notions of time within Delphix (e.g. dSource, VDB, and VDB
lineages) and how they relate to one another. These time-based relationships are exposed in the Timeline
History view to drive accurate testing for developers.

The “Based on dSource time” designation helps to drive awareness of the relationship between a VDB and its
dSource provision point (in most cases this will equate to the production database’s state at that time),
which is helpful for use cases such as capturing data from a meaningful event. As a VDB refreshes to newer

Non-active timeline creation from "Self-Refresh"
In this scenario, a developer has performed a “self-refresh” (formerly referred to as a “rewind” or
“rollback”). In refreshing Snapshot B, the developer has created a new active timeline that
represents a clean slate starting with the data state of Snapshot B. If the developer wants to
refer back to the past results that are represented on the non-active Timeline, he or she can
activate the past timeline by hitting the “Make Active” button in the DCT User Interface or by
refreshing to a point in time by referencing the non-active Timeline’s ID.

Data Control Tower – Data Control Tower Home

Continuous Data workflows – 220

snapshots on a dSource, those changes of data state are grouped separately on the Timeline History view as
they represent completely different data.

8.5.4.5 Timeflow operations

“Make Active”, a developer can reference any past timeflows and data represented therein by making a
timeflow “Active”. This can be done by simply clicking on the timeflow of interest and selecting “Make
Active”.

8.5.4.5.1 Refresh to snapshot

Included within each timeflow are snapshots that can be accessed via a dropdown menu under each
timeflow. If given the right permission, a developer can refresh the VDB to that snapshot. While this may
seem similar to “Make Active”, there are major underlying differences as a “Refresh” will reprovision the VDB
based on that point in time, whereas, “Make Active” simply changes the reference to different blocks of the
underlying storage.

Data Control Tower – Data Control Tower Home

Continuous Data workflows – 221

8.5.4.5.2 Create bookmark

On a snapshot will enable developers to convert that snapshot into a DCT Bookmark (see page 178)that
enables developers to assign a name and special retention policy to that time reference. This also enables
stronger collaboration between developers as bookmark references can be used for a sibling refresh
operation.

8.5.4.5.3 Rename timeflow

Developers can curate time flows to correspond to tests such that they can easily reference results data.
This action can be performed by clicking the ellipsis on the time flow to reach a drop-down menu. This menu
includes the option to "rename" which will open a dialog box to input a new name. The input is prefilled with
the current Timeflow name by default. Saving the dialog kicks off a job to rename the timeflow. The changes
may take a short time to be reflected in the UI.

Data Control Tower – Data Control Tower Home

Continuous Data workflows – 222

8.5.4.5.4 Delete timeflow

Developers have the option to delete time flows via the UI by selecting the ellipsis next to the corresponding
time flow and selecting "delete". When clicked, this opens a confirmation dialog asking if the user wishes to
delete the timeflow. If the dialog is confirmed, a job is kicked off to delete the timeflow. Note: This menu item
is disabled for the currently-active timeflow.

8.5.4.6 API documentation

While the DCT UI provides a visual aspect to timeflow chronology and grouping, the DCT API has all of the
necessary instrumentation to integrate these concepts into automation. The formal documentation can be
found via DCT's swagger docs or the developer resources documentation section. This portion of the
timeflow documentation will provide some general examples:

Get a list of a VDB's timeflows

This simple call will enable the listing of the entire timeflow roster underneath a VDB enabling a developer to
take inventory and action.

curl -X 'POST' \
 'https://<APPLIANCE_ADDRESS>/v3/timeflows/search?limit=50&sort=id' \
 -H 'accept: application/json' \
 -H 'Authorization: <API_KEY>' \
 -H 'Content-Type: application/json' \
 -d '{
 "filter_expression": "dataset_id eq '\''1-ORACLE_DB_CONTAINER-2'\''"
}'

The UPDATE timeflow API can be used to change a timeflow's name

Once the appropriate timeflow is found, developers can rename the timeflow to align with a naming scheme
or other relevant designations such as a compatible code branch.

curl -X 'PATCH' \
 'https://<APPLIANCE_ADDRESS>/v3/timeflows/1-ORACLE_TIMEFLOW-7' \
 -H 'accept: application/json' \
 -H 'Authorization: <API_KEY>' \
 -H 'Content-Type: application/json' \

Data Control Tower – Data Control Tower Home

Continuous Data workflows – 223

 -d '{
 "name": "Latest on refresh state"
}'

List all the snapshots for a timeflow
Developers can then use the snapshot API to find all relevant "actionable" points in time on the identified
timeflow. The below example shows how to only expose snapshots on a particular timeflow. From there,
developers can feed the relevant snapshot ID into refresh or provision endpoints or create a bookmark
reference from that snapshot.

curl -X 'POST' \
 'https://<APPLIANCE_ADDRESS>/v3/snapshots/search?limit=50&sort=id' \
 -H 'accept: application/json' \
 -H 'Authorization: <API_KEY>' \
 -H 'Content-Type: application/json' \
 -d '{
 "filter_expression": "timeflow_id eq '\''1-ORACLE_TIMEFLOW-7'\''"
}'

8.5.5 Locking and unlocking a VDB

This feature allows users with LOCK and UNLOCK permission to lock and unlock a VDB, similar to the lock/
unlock feature available via Self-Service containers on the Continuous Data Engine.

The VDB can be locked by a user with LOCK permissions for that particular VDB. Once a VDB is locked, all of
the VDB operations (Refresh, Start, Stop, Delete, and Create Bookmark) are disabled for all other users.

The user needs the UNLOCK permission on the VDB to perform an unlock operation. Thus, only the user that
locked the VDB OR a user with the FORCE_UNLOCK permission can unlock it. The FORCE_UNLOCK
permission is only granted to the admin system role by default.

The VDB details page has the options to lock and unlock a VDB under the Actions menu. All VDBs are in the
unlocked state by default, thus, the only option available at first is to lock the VDB.

Users cannot lock a VDB with refresh policies assigned to it or have any active engine job
running at the time of locking.

Data Control Tower – Data Control Tower Home

Continuous Data workflows – 224

A warning message is shown on the VDB detail page if the VDB is locked by a user.

Select the Actions menu on a locked VDB to show the unlock action.

Data Control Tower – Data Control Tower Home

84 https://dct.delphix.com/docs/latest/api-references

Continuous Data workflows – 225

•

8.5.5.1 Locking and unlocking a VDB via API

DCT also provides a capability for an account to lock the VDB on behalf of another account, but this is an API
only feature. For an account to be able to lock the VDB on behalf of another account, it needs to have the
LOCK_FOR_OTHER_ACCOUNT permission on the particular VDB.

Formal documentation around the API signature and related payloads can be found via DCT API
documentation84 in the Developer resources section. Below is an example of an account requesting to lock a
VDB on behalf of an account with account_id 2.

curl --location 'https://<APPLIANCE ADDRESS>/v3/vdbs/<VDB ID or NAME>/lock' \
--header 'Authorization: <APIKEY>' \
--header 'Content-Type: application/json' \
--data '{
 "account_id" : 2
}'

8.6 Linking Wizard

8.6.1 Overview

The DCT version 12.0.0 update marks a significant enhancement to data virtualization capabilities in DCT by
introducing the Linking Wizard, which guides the user through intuitive steps to create a dSource.

As of this release, DCT 13.0.0 supports the integration of these types of database sources:

Oracle sources

https://dct.delphix.com/docs/latest/api-references
https://dct.delphix.com/docs/latest/api-references

Data Control Tower – Data Control Tower Home

Continuous Data workflows – 226

•
•

•
•

•
•

•

•

•

•

Staging Push supported
MSSQL sources

Staging Push supported
ASE sources

PostgreSQL, Db2, MySQL, HANA, and MongoDB
AppData sources

8.6.1.1 Limitations in MSSQL dSource linking

The ability to link a dSource from backups managed by third-party tools like NetBackup or CommVault is not
supported for MSSQL databases as of yet. Users can still create dSources from live MSSQL databases.

This is a known limitation and may be addressed in future updates to expand the versatility and applicability
of the dSource feature in diverse data management scenarios.

8.6.1.2 Prerequisites

To utilize the dSource creation feature effectively in DCT 12.0.0, certain prerequisites must be met:

Continuous Data Engine registration: A prerequisite for dSource integration is having a Continuous
Data Engine already registered to a DCT instance. This setup is crucial for enabling the core
functionalities of data virtualization and synchronization.
Availability of eligible sources: It is necessary to have access to eligible database sources that can
be linked as a dSource. These sources should not already be functioning as a dSource, to avoid
redundancy and ensure optimal utilization of the new feature.

8.6.2 Using the Linking Wizard

This new wizard can be launched from the dSource list page, giving the user the ability to create a dSource
from DCT. The steps are outlined below:

8.6.2.1 1. Select Data Source step

Navigate an alphabetically sorted list of data sources, or utilize the search function and pagination to locate
and choose the preferred source.

Upon selecting a source, essential details such as the Instance, Environment Name, and Engine
Name are displayed on the right-hand side of the screen. Database Authentication will be required.
To that point, a crucial part of this step includes a database connectivity check. The Validate button
verifies your connection, ensuring a secure and authenticated progression to the next stages.

Data Control Tower – Data Control Tower Home

Continuous Data workflows – 227

•
•
•

8.6.2.2 2. dSource Type step

In this step, select the nature of the dSource being linked. The options available include:

Source Based dSource: linked directly to a source database.
Oracle Staging Push: linked to a user-managed Oracle staging database.
MSSQL Staging Push: linked to a user-managed MSSQL staging database.

Following the selection of the dSource type, users must then choose the associated engine from the
dropdown menu, which lists the available engines that have been registered in the DCT environment. This
setup dictates the subsequent configuration steps to ensure the linked dSource is correctly aligned with the
user's infrastructure and database management strategy.

Data Control Tower – Data Control Tower Home

Continuous Data workflows – 228

8.6.2.3 3. dSource Configuration step

Name your dSource here. By default, the dSource name mirrors the name of the source, but it can be
modified. Choose the Target Group within the engine to which the new dSource will be added. Add Notes,
and a Tag Key and Tag Value pair, if needed. You must also configure any necessary settings required,
based on the source.

8.6.2.4 4. Data Management step

The step contains various dSource configurations for optimal data management. The wizard fetches and
pre-populates the default values for various data fields, saving you time and reducing manual entry errors.

Data Control Tower – Data Control Tower Home

Continuous Data workflows – 229

8.6.2.5 5. Policies step

Tailor the SnapSync and Retention policies according to your requirements. Default policies are selected
initially, but these settings can be modified through the Select Policy dialog.

Data Control Tower – Data Control Tower Home

Continuous Data workflows – 230

8.6.2.6 6. Hooks step

Enhance the dSource with custom created Hooks. Use the + Hook button to define the scripts that will
execute at various stages of the process, offering greater control and customization over the dSource
creation workflow.

8.6.2.7 7. Summary step

Before finalizing, a comprehensive summary of all your configurations is presented. This overview allows you
to review and confirm that every detail aligns with the intended setup, ensuring accuracy and completeness.
Submit the configuration to finish linking your database.

Data Control Tower – Data Control Tower Home

85 https://dct.delphix.com/docs/latest/linking-wizard

Continuous Data workflows – 231

1.

2.

•

8.6.3 Adding an AppData dSource

The steps to add a dSource in DCT, as outlined in the Linking wizard85 page, should be still be followed.
However, this page covers details specific to adding an AppData dSource to DCT. AppData dSources allow
for efficient handling and integration of application data.

Before initiating the linking process, ensure that an AppData type source is already added in DCT.

8.6.3.1 Steps effected during the Linking process

8.6.3.1.1 Data Source step

Select AppData source: Initiate the dSource Linking wizard and select the desired AppData source.
This selection is crucial in determining the linking procedure.

Dynamic UI form: For an AppData database, a toolkit associated with it contains a
linkedSourceDefinition . This definition, essentially a JSON schema, is rendered as a Dynamic

UI form alongside the Source list. It outlines the necessary steps for linking sources of this type.

Direct AppData source: If selecting a direct AppData source, there’s an option for adding
advanced settings, provided the linkedSourceDefinition has

usesGrandfatheredAppDataProperties set to true.

https://dct.delphix.com/docs/latest/linking-wizard
https://dct.delphix.com/docs/latest/linking-wizard

Data Control Tower – Data Control Tower Home

Continuous Data workflows – 232

•
a.
b.

•

•

8.6.3.1.2 Data Management step

This step is conditional and appears if:
The source is a staged type.
The source, whether direct or staged, requires snapshot parameter configuration.

Snapshot Parameters: These are determined by the toolkit’s snapshotParametersDefinition
and are presented as a Dynamic UI form.
Staging Environment selection: Users can choose the appropriate staging environment and user
credentials during this step.

Data Control Tower – Data Control Tower Home

Continuous Data workflows – 233

8.6.3.1.3 Completion

Continue through the linking process and after submission, the process of creating an AppData dSource
begins. The new dSource will soon be visible on the dSource page, reflecting the configurations made during
the linking process.

8.6.4 Adding an Oracle Staging Push dSource

This page outlines the process for adding an Oracle Staging Push dSource within Delphix Data Control Tower
(DCT). This functionality is crucial for managing Oracle databases, particularly in environments where
staging operations are pushed to target engines. Integrate Oracle Staging Push dSources into your DCT
setup by following the Linking Wizard steps.

8.6.4.1 Prerequisites

Ensure that a target engine, with the source backup already cloned, is registered in the DCT before beginning
the linking process.

Data Control Tower – Data Control Tower Home

Continuous Data workflows – 234

1.

2.

•

•

8.6.4.2 Linking process

8.6.4.2.1 dSource Type step

Select dSource type: Begin the dSource Linking Wizard and choose the 'Oracle Staging Push' option.

Target engine selection: From the engine dropdown, select the desired target engine where the
source backup is located.

8.6.4.2.2 dSource Configuration step

Select dSource configuration: Depending on the type of Oracle database (CDB, PDB, or single tenant),
select the appropriate dSource configuration.
Database details: Based on the previous selection, enter the necessary details that would appear as
shown in the screenshot below.

Data Control Tower – Data Control Tower Home

Continuous Data workflows – 235

• Staging database parameters: An option to configure Staging Database Parameters is available. If
selected, it adds a new step for entering these parameters.

Data Control Tower – Data Control Tower Home

Continuous Data workflows – 236

•

•

8.6.4.2.3 Data Management step

Enable LogSync: This step involves the option to enable log synchronization for real-time data
updates and management.

8.6.4.2.4 Summary step

Review configuration: Examine the details of the summary, which includes information about the
dSource type, target engine, database details, and any additional parameters set in the previous
steps, to ensure all configurations are correct and aligned with the requirements of the Oracle Staging
Push dSource.

Data Control Tower – Data Control Tower Home

Continuous Data workflows – 237

1.

2.

8.6.4.3 Completion

Upon confirming and submitting the details in the Summary step in the Linking Wizard, the process of
creating an Oracle Staging Push dSource is initiated. The new dSource will be integrated into the DCT
environment and will be available for use once the setup is complete.

8.6.5 Adding a MSSQL Staging Push dSource

This page outlines the process for adding a MSSQL Staging Push dSource within Delphix Data Control Tower
(DCT). This functionality is crucial for managing MSSQL databases, particularly in environments where
staging operations are pushed to target engines. Integrate MSSQL Staging Push dSources into your DCT
setup by following the Linking Wizard steps.

8.6.5.1 Prerequisites

Ensure that a target engine, with the source backup already cloned, is registered in the DCT before beginning
the linking process.

8.6.5.2 Linking process

8.6.5.2.1 dSource Type step

Select dSource type: Begin the dSource Linking Wizard and choose the 'MSSQL Staging Push' option.

Select Associated Engine: From the engine dropdown, select the desired target engine where the
source backup is located.

Data Control Tower – Data Control Tower Home

Continuous Data workflows – 238

•

•

•

8.6.5.2.2 dSource Configuration step

Configure dSource details: Enter the dSource Name, Database Name, select a Target Group from the
dropdown, and enter Notes or add Tags, if desired.

8.6.5.2.3 Data Management step

Staging Environment selection: Choose the appropriate Staging Environment to host the staging
database from the dropdown list.
Repository selection: Select the corresponding Repository version.

Data Control Tower – Data Control Tower Home

Continuous Data workflows – 239

•

8.6.5.2.4 Summary step

Review configuration: Examine the summary, which includes includes information about the dSource
type, target engine, database details, and any additional parameters set in the previous steps, to
ensure that all configurations are correct and aligned with the requirements of the MSSQL Staging
Push dSource.

8.6.5.3 Completion

Upon confirming and submitting the details in the Summary step in the Linking Wizard, the process of
creating an Oracle Staging Push dSource is initiated. The new dSource will be integrated into the DCT
environment and will be available for use once the setup is complete.

Data Control Tower – Data Control Tower Home

86 https://delphixdocs.atlassian.net/wiki/spaces/CC/pages/12192185

Continuous Compliance workflows – 240

9 Continuous Compliance workflows

With the ability to distribute and run jobs, DCT enables advanced Compliance Engine architectures to be
orchestrated and monitored using DCT’s real-time, persistent relationships with connected Compliance
Engines. When syncing a Compliance Engine, DCT will create references for all Compliance jobs on that
Engine. These will show up as unique objects tracked by DCT that can now be leveraged with job move APIs.

9.1 Listing and searching compliance jobs
When a Compliance Engine is registered with DCT, compliance jobs (referred to as MaskingJobs within the
DCT API) on the Engine are automatically ingested and presented as DCT MaskingJob objects.

Example of listing all MaskingJobs:

curl -X 'GET' \
 'https://<APPLIANCE_ADDRESS>/v3/masking-jobs' \
 -H 'accept: application/json' \
 -H 'Authorization: <API_KEY>'

Example of searching for OnTheFly MaskingJobs:

curl -X 'POST' \
 'https://<APPLIANCE_ADDRESS>/v3/masking-jobs/search' \
 -H 'accept: application/json' \
 -H 'Authorization: <API_KEY>' \
 -H 'Content-Type: application/json' \
 -d '{
 "filter_expression": "is_on_the_fly_masking eq true"
}'

With the new job move APIs, DCT can now be used to power two advanced masking reference
architectures86: Software Development Lifecycle (SDLC) and Horizontal Scale architectures. SDLC enables
the separation of duties for the development, quality assurance, and production use of masking jobs
whereas Horizontal Scale enables the use of a central configuration engine with the movement of jobs to
headless compute engines.

Compliance Engines limit any syncing operations while a profiling or masking job is running.
When using DCT job move, execute, or migrate operations, please ensure that the target
Compliance Engine is in an idle state. Future Compliance enhancements to DCT will remove this
limitation.

https://delphixdocs.atlassian.net/wiki/spaces/CC/pages/12192185
https://delphixdocs.atlassian.net/wiki/spaces/CC/pages/12192185

Data Control Tower – Data Control Tower Home

Continuous Compliance workflows – 241

•
•

•

To enable these architectures, DCT has introduced three new operations: Job Copy, Job Execute, and Job
Migrate:

Copy: Supports SDLC by copying a job, but maintaining separate references in DCT.
Execute: Supports Horizontal Scale by copying a job, but maintaining the same reference between
two copies. DCT will also keep both of these copies in sync.
Migrate: Supports the movement of a single instance from one engine to another.

9.2 Consolidated operations (intelligent syncing)
DCT has simplified the set of operations required to move a job and its dependencies. Previously,
orchestrating movement of jobs required three separate API calls: Job Sync, Global Object Sync, and
Credentials Update (on the newly created job). DCT has now consolidated all three of these operations into
each of the job move APIs. In addition, if two jobs are held in sync (see Job Execute (see page 250)), DCT will
auto update synced jobs whenever one of those jobs has been modified (i.e. updated rule set, new
algorithms, etc.).

curl -X 'PATCH' \
 'https://<APPLIANCE_ADDRESS>/v3/masking-jobs/d53812ce-9186-485d-a388-44bc52087ead'
 \
 -H 'accept: application/json' \
 -H 'Authorization: <API_KEY>' \
 -H 'Content-Type: application/json' \
 -d '{
 "connector_username": "user123",
 "connector_password": "password123"
}'

9.3 Managing engines (Continuous Compliance)
DCT provides a near real-time list of all connected Continuous Compliance engines and lists them in an
aggregate view. From the below screen, Delphix administrators can easily view and manage their engine
connections.

In order to transfer connector credentials with a job as part of the job move, you will need to
associate those credentials using the connector credentials API. See sample code below on
how to update credentials.

Example of updating a MaskingJob with connector credentials:

Data Control Tower – Data Control Tower Home

Continuous Compliance workflows – 242

From this screen, administrators can manage engine connects via the “Connect Engine” button on the top
right corner. By clicking this button, the below window will appear asking for connection details.

9.3.1 Engine overview

Individual engine details can be seen and acted upon by clicking down on a particular engine detailed view.
Once clicked, users will be sent to an "overview" tab that provides relevant metadata related to the engine.

DCT will access the engine as a registered user and, as detailed in the Deployment section,
requires both a username and password as well as admin-level access to the engine. For
compliance engines, select "Masking" type when registering an engine.

Data Control Tower – Data Control Tower Home

Continuous Compliance workflows – 243

•
•
•
•
•

9.3.2 Engine-based operations access

Users are able to audit which users have access to this particular engine, what access group they belong to,
and the associated permissions that each user has on this engine. Admins are able to click on the "View"
button to access further details under the access control screen related to that specific user.

9.4 Compliance jobs
Job UI (see page 244)

Copy job (see page 247)

Execute job (see page 250)

Migrate job (see page 252)

Delete job (see page 253)

Data Control Tower – Data Control Tower Home

Continuous Compliance workflows – 244

9.4.1 Job UI

9.4.1.1 Global compliance jobs list

When connected to a Continuous Compliance engine, DCT will sync and create references to every
compliance job on the engine. All of those job references can be found in the global compliance list, which is
a taggable, filterable, sortable, and searchable list of all compliance jobs across a connected Delphix
ecosystem.

9.4.1.2 Compliance job overview

Individual compliance job details can be seen and acted upon by clicking down on a particular compliance
job detailed view. Once clicked, users will be sent to an "overview" tab that provides relevant metadata
related to the VDB.

Data Control Tower – Data Control Tower Home

Continuous Compliance workflows – 245

9.4.1.3 Access tab

Users are able to audit which users have access to this particular compliance job, what access group they
belong to, and the associated permissions that each user has on this job. Admins are able to click on the
"View" button to access further details under the access control screen related to that specific user.

9.4.1.4 Execution history tab

The compliance jobs page also includes job execution history. Execution information will be recorded and
displayed on this tab, and includes the status (success, running, failed), run time, submit, and end
timestamps, and engine on which it ran. Additionally, clicking the “details” button for an execution will display
its report.

Data Control Tower – Data Control Tower Home

Continuous Compliance workflows – 246

9.4.1.5 Execution details

The execution details view includes a list of execution events and the execution log. This is particularly
useful when troubleshooting failed executions.

Details for successful executions may also have events and logs which include relevant
information, such as warnings.

Data Control Tower – Data Control Tower Home

Continuous Compliance workflows – 247

9.4.2 Copy job

The Masking Job Copy operation creates a duplicate of a job with a separate reference for that new copy.
This operation supports SDLC workflows as DCT will maintain unique references for each instance of a
masking job, enabling them to be managed independently.

Compliance Engines limit any syncing operations while a profiling or masking job is running.
When using DCT job move, execute, or migrate operations, please ensure that the target
Compliance Engine is in an idle state. Future Compliance enhancements to DCT will remove this
limitation.

Data Control Tower – Data Control Tower Home

Continuous Compliance workflows – 248

9.4.2.1 User interface documentation

Job copy can be run via the DCT UI by accessing a compliance job's detailed view and selecting the ellipsis
in the top right corner and clicking on "copy". This will open a window to select the target engine, the new
name of the transferred job, source and target environment details, and relevant tags.

9.4.2.2 API documentation

For input, the user must specify the target engine along with the environment on the target engine that the
job will be copied onto. The engine and environment pair is what uniquely identifies a copy of the Masking

Data Control Tower – Data Control Tower Home

Continuous Compliance workflows – 249

Job. Calling the COPY API against the same target engine and environment effectively serves as a re-sync
and does not create a new DCT MaskingJob entity.

Example of copying a MaskingJob to engine with ID 2 and environment named ‘prod-env’:

curl -X 'POST' \
 'https://<APPLIANCE_ADDRESS>/v3/masking-jobs/d53812ce-9186-485d-a388-44bc52087ead/
copy' \
 -H 'accept: application/json' \
 -H 'Authorization: <API_KEY>' \
 -H 'Content-Type: application/json' \
 -d '{
 "target_engine_id": "2",
 "target_environment_id": "prod-env"
}'

MaskingJob sync will not copy connector credentials to another engine. In order to make a copied job
executable outside of DCT, the credentials must be set on the Connector itself. The connectors for a
MaskingJob can be searched for, updated, and tested directly via DCT.

Example of listing connectors for a MaskingJob:

curl -X 'GET' \
 'https://<APPLIANCE_ADDRESS>/v3/masking-jobs/d53812ce-9186-485d-a388-44bc52087ead/
connectors' \
 -H 'accept: application/json' \
 -H 'Authorization: <API_KEY>'

Example of updating a connector’s credentials:

curl -X 'PATCH' \
 '<https://<APPLIANCE_ADDRESS>/v3/connectors/2-DATABASE-23'> \
 -H 'accept: application/json' \
 -H 'Authorization: <API_KEY>' \
 -H 'Content-Type: application/json' \
 -d '{
 "username": "USER123",
 "password": "password123"
}'

Example of testing a connector:

curl -X 'POST' \
 '<https://<APPLIANCE_ADDRESS>/v3/connectors/2-DATABASE-23/test'> \
 -H 'accept: application/json' \
 -H 'Authorization: <API_KEY>' \

Data Control Tower – Data Control Tower Home

Continuous Compliance workflows – 250

9.4.3 Execute job

The Execute endpoint creates a duplicate of a job while maintaining a single reference for both job
instances. This operation supports Horizontal Scale workflows, as DCT will maintain a singular reference for
all instances of a job across any number of connected Compliance engines.

As part of this endpoint, DCT will maintain all of these job instances in sync, so they can all be controlled
from a single configuration point (it's recommended to dedicate a select engine or set of engines to the
creation and updating of masking jobs and dependencies) and any changes are automatically propagated to
the other job instances at the time of the next job execute operation. This enables users to identify a
masking job on a configuration engine, copy it over to a dedicated compute engine (or set of engines), and
run that job at a regular cadence through DCT. Whenever the job needs to be updated, the user simply
updates the job on the configuration engine.

Executing a MaskingJob requires only a reference to a target engine as input. DCT will take care of syncing
the job to the target engine and executing it. DCT will create and manage the environment where the job is
copied onto.

Example of executing a MaskingJob on engine with ID 2:

curl -X 'POST' \
 'https://<APPLIANCE_ADDRESS>/v3/masking-jobs/d53812ce-9186-485d-a388-44bc52087ead/
execute' \
 -H 'accept: application/json' \
 -H 'Authorization: <API_KEY>' \
 -H 'Content-Type: application/json' \
 -d '{
 "engine_id": "2"
}'

This will return a DCT job that can be further polled for status updates. The job will only transition to the
COMPLETED state when the entirety of the sync and execution has completed on the target engine.

Compliance Engines limit any syncing operations while a profiling or masking job is running.
When using DCT job move, execute, or migrate operations, please ensure that the target
Compliance Engine is in an idle state. Future Compliance enhancements to DCT will remove this
limitation.

Since all jobs connected via the job execute operation are under a single reference, every time a
job is run, its run statistics will report back to DCT and will be recorded under that singular job
reference.

Data Control Tower – Data Control Tower Home

Continuous Compliance workflows – 251

When a MaskingJob is executed via DCT and the job is synced to the target engine, the default Connector is
used for execution. Masking job sync never copies credentials, for security reasons. Since having credentials
set on the target connector is required for execution, DCT enables this by allowing users to store connector
credentials within DCT itself. A DCT MaskingJob now contains properties for the connector credentials. The
expectation is that users will pre-store the credentials by using the UPDATE API on the MaskingJob.
MaskingJob execution has a hard requirement that credentials be saved within a MaskingJob prior to
allowing execution.

Example of updating a MaskingJob with connector credentials:

curl -X 'PATCH' \
 'https://<APPLIANCE_ADDRESS>/v3/masking-jobs/d53812ce-9186-485d-a388-44bc52087ead'
 \
 -H 'accept: application/json' \
 -H 'Authorization: <API_KEY>' \
 -H 'Content-Type: application/json' \
 -d '{
 "connector_username": "user123",
 "connector_password": "password123"
}'

Once a MaskingJob execution has been initiated, the EXECUTION APIs can be used to view and cancel
running executions as well as search through execution history. Note that canceling an execution is a best-
effort action that does not interrupt any of the job sync that may occur prior to the execution.

Example of searching for executions of a particular MaskingJob:

 'https://<APPLIANCE_ADDRESS>/v3/executions/search' \
 -H 'accept: application/json' \
 -H 'Authorization: <API_KEY>' \
 -H 'Content-Type: application/json' \
 -d '{
 "filter_expression": "masking_job_id eq '\''d53812ce-9186-485d-
a388-44bc52087ead'\''"
}'

Example of canceling an execution if and only if it is in the RUNNING state (denoted by the expected_status
query parameter):

curl -X 'POST' \
 'https://<APPLIANCE_ADDRESS>/v3/executions/11397caa-6006-4eba-b575-ae3ad00c3762/
cancel' \
 -H 'accept: */*' \
 -H 'Authorization: <API_KEY>' \
 -H 'Content-Type: application/json' \
 -d '{
 "expected_status": "QUEUED"
}'

Data Control Tower – Data Control Tower Home

Continuous Compliance workflows – 252

9.4.3.1 User interface

Execute a compliance job with the Execute action, available in the action menu on the top right corner of the
job details page. This will open a window that lists Compliance engines with which a job needs to be
executed. Once selected, click the "Execute" button to start the job on the selected engine. The screenshot
below shows a selected engine.

9.4.4 Migrate job

The Migrate endpoint moves a job from one engine to another without any duplicates. This endpoint is
useful for consolidating masking jobs (i.e. moving jobs to a fresh engine ahead of the original being retired or
consolidating two development engines into a single one for administrative simplicity). This means that a job
will continue to have only a single instance with no additional jobs being created. This job will maintain its
same reference within DCT.

Example of finding all MaskingJobs originating from engine with ID 2:

curl -X 'POST' \
 'https://<APPLIANCE_ADDRESS>/v3/masking-jobs/source-engines/search' \
 -H 'accept: application/json' \
 -H 'Authorization: <API_KEY>' \
 -H 'Content-Type: application/json' \
 -d '{

Compliance Engines limit any syncing operations while a profiling or masking job is running.
When using DCT job move, execute, or migrate operations, please ensure that the target
Compliance Engine is in an idle state. Future Compliance enhancements to DCT will remove this
limitation.

Data Control Tower – Data Control Tower Home

Continuous Compliance workflows – 253

 "filter_expression": "source_enigne_id eq '\''2'\''"
}'

Example of migrating a MaskingJob to new source engine with ID 3 and placing it in the ‘prod-env’
environment:

curl -X 'POST' \
 'https://<APPLIANCE_ADDRESS>/v3/masking-jobs/d53812ce-9186-485d-a388-44bc52087ead/
migrate' \
 -H 'accept: application/json' \
 -H 'Authorization: <API_KEY>' \
 -H 'Content-Type: application/json' \
 -d '{
 "target_engine_id": "3",
 "target_environment_id": "prod-env"
}'

9.4.5 Delete job

Calling the DELETE API on a MaskingJob will effectively remove the record from DCT (and its execution
history) as well as delete the actual masking job on the source engine and on any other engine where the job
has been copied to (as a result of execution). The API includes a force option to prevent the action from
failing in the event that an engine is unreachable.

Example of deleting a MaskingJob with the force option:

curl -X 'DELETE' \
 'https://<APPLIANCE_ADDRESS>/v3/masking-jobs/d53812ce-9186-485d-a388-44bc52087ead?
force=true' \
 -H 'accept: application/json' \
 -H 'Authorization: <API_KEY>'

This will return a DCT Job that can be further polled for status updates. Note that if the force option is used
and there are ignored errors, details about those errors will be included in the error_details and
warning_message fields of the DCT Job as follows:

Data Control Tower – Data Control Tower Home

Continuous Compliance workflows – 254

•

•

•

•

•

•

{
 "job": {
 "id": "722ba51cf70e4e32adbd192b07304bb5",
 "status": "COMPLETED",
 "type": "MASKING_JOB_DELETE",
 "error_details": "Unable to connect to the engine.",
 "warning_message": "Failed to remove local MaskingJob, engineId: 3
localMaskingJobId: 7.",
 "target_id": "d53812ce-9186-485d-a388-44bc52087ead",
 "start_time": "2022-01-02T05:11:24.148000+00:00",
 "update_time": "2022-01-02T06:11:24.148000+00:00"
 }
}

9.5 Read-only algorithms

9.5.1 Overview

The DCT 13.0.0 release introduces a new functionality that allows users to explore the masking algorithms
supported by DCT, as well as algorithms imported from a Continuous Compliance Engine.

DCT is equipped with a collection of plugins that support masking algorithms, each containing multiple built-
in algorithms by default. In DCT version 13.0.0, the shipped algorithm plugin versions range from 1.8.0 to
1.21.0 and from 17.0.0.0 to 19.0.0.0.

In DCT, each algorithm may undergo multiple revisions, distinguished by its configuration and algorithm key.
Connecting a Continuous Compliance Engine to DCT results in the importation of both built-in and custom
algorithms from the engine. If an algorithm already exists in DCT, new revisions are created under the
algorithm to accommodate those imported from the engine.

9.5.1.1 Feature Limitations

In DCT 13.0.0, all algorithms and their revisions are read-only. Users cannot create, delete, or modify
algorithms or revisions. Users can, however, add or remove tags to algorithms and revisions, in addition to
changing the name and note of revisions.

9.5.1.2 Algorithms page

Algorithm list view

Displays a list of available masking algorithms.

Each algorithm entry shows:

Algorithm name.

Framework name.

Description.

Data Control Tower – Data Control Tower Home

Continuous Compliance workflows – 255

•

•
•

•

•

•

•
•

•

•
•

•

•

Tags.

Clicking an algorithm or the View button redirects to its details overview page.
Filter and search functionality

Allows users to filter and search through the list of algorithms based on names, plugin,
framework, or tags.

9.5.1.3 Algorithm Details Overview page

Algorithm Overview section

Displays the selected algorithm's name and plugin.

Shows a brief description of the algorithm and its purpose.
Revisions list

Lists all revisions of the selected algorithm.

Each revision entry includes the revision name.
Action buttons (if applicable)

Buttons for adding/removing tags.

Options to change the name and note of revisions (reflecting the read-only nature of the
algorithms).

Data Control Tower – Data Control Tower Home

Continuous Compliance workflows – 256

•

•

•

•

•

•

•
•

•

9.5.1.4 Algorithm Revisions page

Revision list:

Shows a list of the Revisions, along with columns for name, note, engine (which engine this
revision comes from), and tags.

Import information:

If the revision is imported from a Continuous Compliance Engine, additional details are
shown, like the source of import and any custom modifications.

Tag management:

Options to add or remove tags from the revision.

Reflects the user's ability to manage tags despite the read-only status of algorithms.
Name and note editing:

Fields allowing users to change the name and add notes to the revision.

Data Control Tower – Data Control Tower Home

Continuous Compliance workflows – 257

Data Control Tower – Data Control Tower Home

87 https://hyperscalemasking.delphix.com/docs/latest/
88 https://dct.delphix.com/docs/10.0.0/connecting-authenticating

Hyperscale Orchestrator UI – 258

•

•

•

•

•

•

1.

2.
a.
b.

3.

4.

5.

10 Hyperscale Orchestrator UI

10.1 Overview
The Hyperscale UI is Controlled Availability, meaning that Delphix highly encourages interested customers to
reach out to Delphix Product and Engineering for a guided onboarding. Please contact your account team if
interested.

To disambiguate object nuances between Compliance Engines, Hyperscale Orchestrators, and DCT, please
refer to the following definitions:

Hyperscale dataset

A Hyperscale dataset is a granular unit that defines source and target connector information
alongside a defined database schema to be masked (the inventory on a Compliance Engine).

Hyperscale job

A Hyperscale-specific object that is comprised of a rule set along with additional running
parameters such as engines to be used and memory settings.

Hyperscale job execution

The execution information such as duration, rows masked, etc. that is sent back to DCT for
reporting.

Data Control Tower has the ability to connect to one or more Hyperscale Compliance Orchestrators87, to
serve as a complimentary user interface. The current Compliance Engine/Hyperscale Orchestrator/DCT
workflow is as follows:

Build the foundational objects (rule sets, connectors, inventories, etc.) within the Compliance Engine.

Build a data set on the Hyperscale cluster by either:
Importing a compliance job from a Compliance Engine.
Building the dataset via the connector, dataset, and jobs API on the Hyperscale cluster (DCT
will read the new Hyperscale jobs and display them.)

Set up the DCT-to-Hyperscale connection by following simple steps in the Connecting/
authenticating88 page. DCT will then create references for any data sets (registered as Hyperscale
jobs in DCT), cluster details (e.g. mount points, etc.), and pre-existing engine connections to the
Hyperscale Orchestrator.

Create a Hyperscale job on DCT by selecting an existing masking job and importing the job’s
inventory and connector information into DCT to represent a hyperscale job. Users have the option to
further refine the job details such as defining table-specific masking parameters. A job will appear as
a special Hyperscale job on the compliance jobs page.

Execute a Hyperscale job by selecting the run option on the Hyperscale jobs detailed view.

https://hyperscalemasking.delphix.com/docs/latest/
https://dct.delphix.com/docs/10.0.0/connecting-authenticating
https://hyperscalemasking.delphix.com/docs/latest/
https://dct.delphix.com/docs/10.0.0/connecting-authenticating

Data Control Tower – Data Control Tower Home

Hyperscale Orchestrator UI – 259

6. DCT will recognize this job execution and will present the execution details under the specific
Hyperscale Orchestrator’s Details page.

10.2 Implementation introduction
The first step in working with Hyperscale is to register a Hyperscale Orchestrator with DCT. DCT connects to
all Hyperscale Orchestrators over HTTPS, some configurations might be required to ensure DCT can
communicate successfully.

Begin the Hyperscale Orchestrator registration flow, as well as view currently registered Hyperscale
Orchestrators under the Compliance -> Hyperscale Orchestrators section. The registration wizard will guide
you through the steps of the process, some of which are described in further detail below.

10.2.1 Truststore for HTTPS

If the CA certificate that signed the Hyperscale Orchestrator’s HTTPS certificate is not a trusted root CA
certificate present in the JDK, then custom CA certificates can be provided to DCT. If these certificates are
not provided, a secure HTTPS connection cannot be established and registering the Hyperscale Orchestrator
will fail. The insecure_ssl Hyperscale Orchestrator registration parameter available as a checkbox
option in the registration wizard can be used to bypass the check, however, this should not be used unless
the risks are understood.

Get the public certificate of the CA that signed the Hyperscale Orchestrator’s HTTPS certificate in PEM
format. Your IT team might be required to get the correct certificates. Base64 encode the certificate with:

cat mycertfile.pem | base64 -w 0

Copy the Base64 encoded value from the previous step and configure in the values.yaml file under the
truststoreCertificates section. For example, the section might look like this:

truststoreCertificates: <certificate_name>.crt: <base64 encode certificate string
value in single line>

<certificate_name> can be any logically valid string value, like “hyperscale”.

All certificates configured in the truststoreCertificates section will be read and included in the
trustStore, which would then be used for SSL/TLS communication between DCT and Hyperscale.

10.2.2 Authentication with Hyperscale Orchestrators

All authentication with a Hyperscale Orchestrator is done with an API Key corresponding to an admin
Hyperscale user. The API will be stored and encrypted on DCT itself. The use of a vault to store Hyperscale
credentials is currently not supported.

Data Control Tower – Data Control Tower Home

Hyperscale Orchestrator UI – 260

10.2.3 Hyperscale deployment type

A deployment type designation must be made for a Hyperscale Orchestrator at the time of registration. The
registration UI wizard will present the data type options that are supported. This type must be in line with the
type of data source the Hyperscale Orchestrator has been set up to mask (eg, Oracle).

10.2.4 Editing and unregistering Hyperscale Orchestrators

Making edits to a Hyperscale Orchestrator’s configuration can be done via the UI, in the Orchestrator’s
overview page via the Edit action in the Details tile.

Unregistering a Hyperscale Orchestrator and removing all its data from DCT can be done via the DELETE
API or directly in the UI via the Actions menu.

Data Control Tower – Data Control Tower Home

Hyperscale Orchestrator UI – 261

10.3 Managing Hyperscale objects

10.3.1 Introduction

After registering a Hyperscale Orchestrator, DCT will begin to ingest all relevant data discovered on that
Hyperscale instance. This data, in turn, becomes modeled in the DCT world with APIs and a UI to (and
manage to a limited extent). Currently, a lot of this data can be navigated to and viewed from the main
overview details page of a Hyperscale Orchestrator.

Data Control Tower – Data Control Tower Home

Hyperscale Orchestrator UI – 262

10.3.2 Hyperscale executions

A view of all current and past Hyperscale job executions present on a particular Hyperscale Orchestrator can
be found under the Job Executions tab. The View link will display additional information, especially for in-
progress or failed executions.

10.3.3 Hyperscale jobs

A view of all Hyperscale jobs discovered on a Hyperscale Orchestrator can be found under the Associated
Jobs tab.

Data Control Tower – Data Control Tower Home

Hyperscale Orchestrator UI – 263

The View link will take you to the Compliance Jobs details page where more information about the job can
be found.

Data Control Tower – Data Control Tower Home

Hyperscale Orchestrator UI – 264

Configuration and dataset details can be edited directly in the job’s Overview page.

10.3.4 Hyperscale job engine selection

The Engine Selection tab allows you to manage the compliance engines that the job can use for masking.
The table will list all compliance engines that are part of the Hyperscale Orchestrator’s engine pool. Each
compliance engine will either be Selected or Not Selected for the job. The state of each engine is indicated by
the Selection column and can be changed via the Actions menu.

Hyperscale jobs are not separate entities in DCT, but rather are combined with standard
Compliance jobs. Hence, this Hyperscale job details page can be navigated to from Compliance
-> Compliance Jobs. There is a type attribute (Hyperscale or standard) which helps
differentiate between the different types.

Data Control Tower – Data Control Tower Home

Hyperscale Orchestrator UI – 265

10.3.5 Hyperscale job table configuration

The Table Configuration tab contains the early stages of inventory management. You can see the Hyperscale
dataset tables and their settings in the screenshot below. The left side shows the list of tables and allows
you to search and paginate through the results.

The right side shows you the settings and allows you to make changes via the Edit action.

Data Control Tower – Data Control Tower Home

Hyperscale Orchestrator UI – 266

10.3.6 Executing Hyperscale jobs

A Hyperscale job can be executed via the Actions menu.

Once a job has started, a progress bar with details will appear in the Overview page.

Data Control Tower – Data Control Tower Home

Hyperscale Orchestrator UI – 267

Click the View Job Execution Details link to go to the Execution Details page to see job execution progress,
as well as an Actions menu to Stop or Re-Run a job.

Details of a failed job will also be displayed in the Execution Details page. If the job was configured to retain
execution data, the Clean option in the Actions menu can be used to discard this data.

Data Control Tower – Data Control Tower Home

Hyperscale Orchestrator UI – 268

10.3.7 Creating Hyperscale jobs

New Hyperscale jobs can be created via DCT when you have a database compliance job setup on a
Compliance Engine and need to use the same masking inventory in a Hyperscale job. DCT will export the
masking job details from the Compliance Engine and import them into the Hyperscale Orchestrator. The
result is a new set of Hyperscale connectors, a dataset, and a Hyperscale job.

The + Hyperscale Job button in the Actions menu will initiate a wizard that walks you through the creation
process.

After setting the new job name, description, and tags, the wizard will prompt you to select a source
compliance job. This compliance job must be the source job on your compliance engine whose inventory you
want to import. You must then explicitly select a Hyperscale Orchestrator to create the job on, along with the
MountPoint to use. Finally, set any and all configuration settings that are relevant to the job you want to
create.

Data Control Tower – Data Control Tower Home

Hyperscale Orchestrator UI – 269

By default, DCT will create the Hyperscale job using all available Compliance Engines in the orchestrator’s
pool. If changing this selection is required, it can be done after job creation in the Engine Selection tab of the
job’s details page.

Currently DCT does not validate or enforce required input parameters. The requirements to create a
Hyperscale job will differ depending on the Hyperscale Orchestrator version and database type.

As a reminder, the import process will not include any secure credentials for connectors. You have the option
to set the connector credentials up front when creating the job (see screenshot above). Otherwise, you must
independently find the imported connectors and explicitly set the credentials after the job has been created.

If your source compliance job is using any global objects such as Algorithms, those global objects must be
pre-synced to all engines in the orchestrator’s engine pool. This can be done via the Manually Deploy Job
Dependencies option in the Hyperscale Orchestrator’s Action menu.

Data Control Tower – Data Control Tower Home

89 https://documentation.delphix.com/docs/hyperscale-compliance

Hyperscale Orchestrator UI – 270

The wizard will walk you through the necessary steps which includes selecting the source compliance engine
along with one or more target engines.

Please refer to the Hyperscale product documentation89 for the Hyperscale Orchestrator version you are
running to learn all about the specifics of creating jobs in Hyperscale.

https://documentation.delphix.com/docs/hyperscale-compliance
https://documentation.delphix.com/docs/hyperscale-compliance

Data Control Tower – Data Control Tower Home

Hyperscale Orchestrator UI – 271

Updates to the original source compliance job can be done anytime after initial import and a re-import can be
done via DCT. This will update the Hyperscale job’s existing dataset with the refreshed ruleset from the
source compliance job.

Note that this action will keep existing table configurations intact and the initial default settings for unload
split and stream size will apply only to new tables. These settings can be changed for any table afterwards in
the job’s Table Configuration details.

10.3.8 Hyperscale Compliance Engines

A view of all Compliance Engines registered with a Hyperscale Orchestrator can be found under the Engine
Pool tab.

When DCT discovers the engines registered with a Hyperscale Orchestrator, it will create DCT
RegisteredEngine entities out of them (if they do not already exist in DCT, as uniquely identified by the

hostname). The result is a unified model where DCT RegisteredEngine objects are what make up the

Data Control Tower – Data Control Tower Home

Hyperscale Orchestrator UI – 272

engine pool in a Hyperscale Orchestrator. The same engines will appear under the Compliance ->
Compliance Engines page.

Adding new engines to the engine pool can be done by clicking the + Engine button. Only Compliance
Engines that have already been registered with DCT can be added to a Hyperscale Orchestrator’s engine
pool:

Engine credentials will not be retrieved from the Hyperscale Orchestrator, so the created
engines must be updated with credentials, along with any relevant security settings. The
discovered engines will remain in the OFFLINE status until updated.

The created DCT engine entities are permanent, in the sense that even if the origin Hyperscale
Orchestrator is unregistered, the engines in DCT remain as if they had been registered
independently of Hyperscale.

Data Control Tower – Data Control Tower Home

Hyperscale Orchestrator UI – 273

Note that this operation will, in turn, register the Compliance Engine with the Hyperscale Orchestrator. The
Compliance Engine name, credentials, and configuration settings will be set according to DCT’s record.

Removing an engine from the engine pool can be initiated with the Remove button via the Actions menu:

This will completely unregister the Compliance Engine from the Hyperscale Orchestrator.

10.3.9 Hyperscale mount points

A view of all mount points on a Hyperscale Orchestrator can be found under the Mount Points tab.

Data Control Tower – Data Control Tower Home

Hyperscale Orchestrator UI – 274

Creating new mount points can be done via the + Mount Point button.

This will result in a new mount point being created directly on the Hyperscale Orchestrator.

Editing and Deleting a mount point can be done for a particular row via the Action menu in the last column of
the table.

Data Control Tower – Data Control Tower Home

Hyperscale Orchestrator UI – 275

10.3.10 Hyperscale connector configurations

A view of all connectors on a Hyperscale Orchestrator can be found under the Connector Configurations tab.

Creating new connectors can be done via the + Connector button.

Data Control Tower – Data Control Tower Home

Hyperscale Orchestrator UI – 276

Editing and Deleting a connector can be done for a particular row via the Actions menu in the last column of
the table.

Data Control Tower – Data Control Tower Home

90 http://ecosystem.delphix.com

Integrations – 277

11 Integrations
Data Control Tower provides a global integration layer for a connected Delphix ecosystem, whether that is a
single or dozens of globally distributed engines, DCT drives a scalable approach to integrating Delphix into
any custom script or automation toolchain.

Aside from the comprehensive API layer (see API references (see page 295) for more detail), DCT powers
automation through Delphix-built and supported integrations with popular applications such as Terraform,
ServiceNow, etc.

To see a current list of Delphix integrations, please visit Delphix Integrations90 for more detail.

http://ecosystem.delphix.com
http://ecosystem.delphix.com

Data Control Tower – Data Control Tower Home

DCT concepts – 278

12 DCT concepts

12.1 Introduction
Data Control Tower (DCT) provides new and novel approaches to general Delphix workflows, delivering a
more streamlined developer experience. This article will introduce these concepts to Delphix and how they
work with DCT.

12.2 Concepts

12.2.1 Virtual Database (VDB) groups

Virtual Database (VDB) groups are a new concept to Delphix, which enable the association of one or more
VDBs as a single VDB group. This allows for bulk operations to be performed on the grouped VDBs, such as
bookmark, provision, refresh, rewind, and others. This will assist in complex application testing scenarios
(e.g. integration and functional testing) that require multiple data sources to properly complete testing.

With VDB groups, developers can now maintain data synchronicity between all grouped VDBs, which is
particularly useful for complex timeflow operations. For example, updating VDBs to reflect a series of
schema changes across data sources, or to reflect an interesting event in all grouped datasets. In order to
maintain synchronicity among grouped datasets, timeflow operations (refresh, rewind, etc.) must use a
bookmark reference.

•

•

•

For VDB Provisioning, the UI supports these data platforms:

Oracle Single Instance Single Tenant

Oracle Single Instance Multi Tenant (for Linked CDB only)

MSSql Single Instance

For Infrastructure Connection Wizard, only UNIX standalone environments can be added via the
UI.

Data Control Tower – Data Control Tower Home

DCT concepts – 279

•
•
•
•

In the above example, a VDB Group reference is created for three VDBs. At the end of the above timeline
group, a developer decides to rollback those VDBs to a previous snapshot. By issuing a single command via
the VDB groups endpoint, DCT will move all three back, ensuring that they all maintain referential
synchronicity.

Bookmarks and VDB groups are loosely related; a VDB group can exist in the absence of any bookmarks, and
a bookmark can exist without any VDB group. It is important to note that the bookmark represents data,
while the VDB group represents the databases to make this data available.

12.2.2 Comparing Self-Service containers to VDB groups

As mentioned above, VDB groups are a crucial DCT concept that enable Self-Service functionality outside of
the Self-Service application. Consider VDB groups acting similarly to Self-Service containers, in that it
provides grouping and synchronization among VDBs, but VDB groups can provide a more flexible approach
for users. Here are some additional points for example:

The same VDB can be included in multiple VDB groups
Including a VDB in a VDB group does not prevent operations on the VDB individually
VDBs can be added to or removed from VDB groups
VDB groups do not have their own timeline

DCT will automatically stop an operation from executing if one or more objects are incompatible
(e.g. provisioning a VDB group into a set of environments, where one of the VDBs is
incompatible, such as an Oracle on Linux VDB provisioned onto a Windows environment).

VDB groups based operations will return a single job to monitor the overall status of the series
of individual VDB operations. If one of those individual operations is unable to complete, DCT
will report a “fail”, but any individual operations that are able to successfully complete will still
do so.

Data Control Tower – Data Control Tower Home

DCT concepts – 280

•
•
•

12.2.3 Bookmarks

DCT Bookmarks are a new concept that represents a human-readable snapshot reference that is maintained
within DCT. This is not to be confused with Self-Service bookmarks, maintained separately within the Self-
Service application. With DCT Bookmarks, developers can now reference meaningful data (e.g. capturing a
schema version reference to pair with an associated code version, capturing test failure data so that
developers can reproduce the error in a developer environment, etc.) and use those references for any
number of use-cases (e.g. versioning data as code, quickly provisioning a break/fix environment with
relevant data, etc.). DCT Bookmarks are compatible with both VDBs and VDB groups, and can be used as a
reference for common timeflow operations such as:

Provisioning a VDB or VDB group from a bookmark
Refreshing a VDB or VDB group to a bookmark
Rewinding a VDB or VDB group to a bookmark

12.2.4 Jobs

Jobs in DCT are the primary means of providing operation feedback (PENDING, STARTED, TIMEDOUT,
RUNNING, CANCELED, FAILED, SUSPENDED, WAITING, COMPLETED, ABANDONED) for top-level operations
that are run on DCT. Top-level operations represent the parent operation that may have one or more child-
based jobs (e.g. refreshing a VDB group is the parent job to all of the individual refresh jobs for the grouped
VDBs under the VDB group reference).

DCT Bookmarks have associated retention policies, the default value is 30 days, but policies can
be customized anywhere from a day to an infinite amount of time. Once the Bookmark expires,
DCT will delete the bookmark.
Bookmarks are compatible with individual VDBs and VDB groups. Bookmark Sharing is only
available for engines on version 6.0.13 and above.
DCT Bookmarks, when created, initiate a snapshot operation on each and every VDB in order to
maintain synchronicity between each VDB. In that same vein, bookmark-based VDB group
operations will have each VDB-specific sub-process run in parallel (as opposed to sequentially)
to reduce drift between grouped VDBs.

Top-level jobs will report a “FAILED” status if one or more child jobs fail. For child jobs that can
complete, DCT will continue to complete those jobs even if a parent job reports a failure.

Data Control Tower – Data Control Tower Home

DCT concepts – 281

•
•
•
•

•

•

12.2.5 Tags

DCT Tags enable a new business metadata layer for users and consumers to filter, sort, and identify
common Delphix objects, to power any number of business-driven workflows. A tag is comprised of a
(Key:Value) pair that associates business-level data (e.g. location, application, owner, etc.) with supported
objects. DCT 2.0 and above support the following Tags:

Continuous Data Engines
Environments
dSources
VDBs

Developers and administrators add and remove tags using tag-specific object endpoints (e.g. /vdbs/

{vdbId}/tags) and can leverage tags as search criteria when using the object-specific search endpoints
(e.g. using filtering language to narrow results).

Some sample tag-based use-cases include:

Refreshing all the VDBs owned by a specific App Team using an “Application: Payment Processing”
tag. This would be accomplished by querying “what VDBs have the (Application: Payment
Processing) tag" and feeding those VDB IDs into the refresh endpoint.
Driving accountability for VDB ownership by tagging primary and secondary owners for each VDB
(e.g. (primary_owner: John Smith), (secondary_owner: Jane Brown)). That way, if a VDB is overdue for
a refresh, tracking down an owner is a simple tag query.

12.2.6 Tag-based filtering

All taggable objects support tag-based filtering for API queries that adhere to the search standards
documented in API References (see page 295). A few examples of how tag-based filtering can be used are as
follows:

List all VDBs of type 'Oracle' , of which IP address contains the '10.1.100' string and which have

been tagged with the 'team' tag, 'app-dev-1' .

database_type EQ 'Oracle' AND ip_address CONTAINS '10.1.100' and tags CONTAINS { key
EQ 'team' AND value EQ 'app-dev-1'}

Tags are registered as an attribute that is specific to an object as opposed to a central tagging
service. As a result, tag-based querying can only be done on a per-object type basis.

A supported object can contain any number of tags.

Data Control Tower – Data Control Tower Home

DCT concepts – 282

12.3 Nuances

12.3.1 Stateful APIs

All applicable DCT APIs are stateful so that running complex queries against a large Delphix deployment can
be done rapidly and efficiently. DCT accomplishes this by periodically gathering and hosting telemetry-based
Delphix metadata from each engine.

12.3.2 Local data availability

DCT currently relies on existing Continuous Data and Compliance constructs around data-environment-
engine relationships. This means that DCT operations require VDBs to live on the engine where the parent
dSource lives and so on.

12.3.3 Engine-to-DCT API mapping

Wherever possible, DCT has looked to provide an easier-to-consume developer experience. This means that
in some cases, an API on DCT could have an identical API on an engine. However, there are many instances
of providing a higher level abstraction for ease of consumption; one example is the data inventory APIs on
DCT (sources, dSources, VDBs), which are a simplified representation of data represented by the source,
sourceconfig, and repository endpoints on the local engine (source, dSource, and VDB detail are all combined
under those three endpoints).

12.3.4 Local references to global UUIDs

In order to avoid collision of identically-named and referenced objects, DCT generates Universally Unique
IDentifiers (UUID) for all objects. For existing objects on engines like dSources and VDBs, DCT will
concatenate the local engine reference with the engine UUID (e.g. 'Oracle-1' on engine '3cec810a-

ee0f-11ec-8ea0-0242ac120002' will be represented as 'Oracle-1-3cec810a-

ee0f-11ec-8ea0-0242ac120002' on DCT).

12.3.5 Environment representations

Environments within Delphix serve as a reference for the combination of a host and instance. This is coupled
with the fact that environments can be leveraged by multiple engines at the same time and that engines
often have a specific context to some of the elements that comprise an environment. For example, an
environment could have both an Oracle and ASE instance installed and that Engine A leverages an Oracle-
based workflow and Engine B leverages an ASE workflow. DCT will create two identifiers to represent the
specific host and instance combinations. Thus, in DCT, Engine A will be connected to a different uniquely
identified Environment than Engine B.

As mentioned earlier with Engine-to-DCT API mapping, DCT aims to simplify the user experience with Delphix
APIs by combining different Continuous Data endpoints into a simplified DCT API. The Environment API does
this by combining environment, repository, and host endpoints so that writing queries against Delphix data is

Data Control Tower – Data Control Tower Home

DCT concepts – 283

a much simpler process. One example would be identifying all environments that have a compatible Oracle
home for provisioning:

repositories CONTAINS { database_type EQ 'Oracle' and allow_provisioning EQ true AND
version CONTAINS '19.2.3'}

12.3.6 Supported data sources/configurations

DCT is compatible with all Delphix-supported data sources and configurations.

12.3.7 Process feedback

Whenever a DCT request completes, it will return a JOB ID as its response. This Job ID can be used in
conjunction with the jobs endpoint to query the operation status.

Data Control Tower – Data Control Tower Home

DCT Toolkit – 284

•

•

•

•

13 DCT Toolkit

13.1 Introduction
DCT Toolkit (dct-toolkit) is the command line application specifically designed to interact with a particular
DCT instance. It aims to simplify and ease out interacting with DCT instances while making the process
intuitive, with minimal configuration and setup. dct-toolkit abstracts all of the API level implementation
complexities and provides a user friendly LINUX-like interface, which can be run from any terminal.

13.2 Compatibility
dct-toolkit is designed to be compatible with any DCT product version, but is fully supported from DCT
version 8.0.0 onwards. While dct-toolkit can be used in testing or development environments against any
DCT versions, Delphix highly recommends at least DCT version 8.0.0 for using it in the production
environment. Some of the value added features are only supported from DCT 8.0.0 version onwards.

dct-toolkit does not need to be upgraded with every new version of DCT. All of the new APIs that are part of
the newer DCT releases will automatically be available in dct-toolkit. This is possible because dct-toolkit
reads the api specification from the DCT instance (configurable) it is configured to connect to and
dynamically generates the list of commands and their respective options.

13.3 New features

13.3.1 Version 1.2.0

--json/-js option
dct-toolkit now supports a --json/-js option for all of the commands. If this option is specified,
all properties from the DCT response are printed in JSON format. This option is mutually exclusive
with the --all-columns/-A and --columns/-c options, but can be used along with the --

jsonpath/-jp and --expand/-ex options.
--csv/-cs option
dct-toolkit now supports a --csv/-cs option for all of the commands. If this option is specified, all
properties from the DCT response are printed in CSV format. This option can be used along with the
--columns/-c option only to output particular properties from the DCT response. This option can

also be specified along with the --jsonpath/-jp and --expand/-ex options.

This option is only applicable to list API responses where the response is printed in table
format by default. For all other APIs that return a single object, this option is ignored.

create_config and encrypt_api_key commands are now interactive

Data Control Tower – Data Control Tower Home

91 https://download.delphix.com/folder/4721/Delphix%20Product%20Releases/DCT/Toolkit%20(CLI)

DCT Toolkit – 285

While providing apiKey value in create_config and encrypt_api_key command, there is a risk

that plaintext apiKey can leak via shell history. To protect against this, both of these commands are
now made interactive. Providing an apiKey interactively does not leak it via shell history. Following
examples demonstrates providing apiKey interactively. Once following commands are executed,

dct-toolkit will ask and wait for the apiKey to be provided by the user before executing the
command.

./dct-toolkit encrypt_api_key dctUrl=<DCT instance URL> apiKey

./dct-toolkit create_config dctUrl=<DCT instance URL> apiKey

13.4 Installation and setup

13.4.1 Installation

dct-toolkit is currently supported on Linux, Windows, and macOS platforms. There are no special system
requirements for running it.

To install dct-toolkit, download the executable binaries from the Delphix download site91 and extract it to the
machine from which it needs to run. Once the executable binary is extracted, grant the execute permission to
the binary file.

On Linux and macOS this can be done from Terminal with the following command:

chmod 777 ./dct-toolkit

For Windows this can be done from cmd with the following command:

CACLS files /e /p <username>:F

Where <username> is the user to whom the permission must be granted and F is the Full Control
permission that needs to be granted.

The binary is not currently verified for macOS and will give a warning that the binary is untrusted.
To get around this issue, you will need to open the binary and explicitly whitelist it. One easy way
to achieve this is by pressing the ctrl key and clicking on the binary file, then select Open. On the
resulting warning message box, select Open. Now the binary is allowed to be executed from the
terminal.

https://download.delphix.com/folder/4721/Delphix%20Product%20Releases/DCT/Toolkit%20(CLI)
https://download.delphix.com/folder/4721/Delphix%20Product%20Releases/DCT/Toolkit%20(CLI)

Data Control Tower – Data Control Tower Home

DCT Toolkit – 286

13.4.2 Setup

A plain text configuration file is needed to get started. The recommended way to create this configuration file
is via the create_config command, available in dct-toolkit.

For creating a typical configuration with only the required properties, use the following command:

dct-toolkit create_config dctUrl=<URL of DCT instance> apiKey=<api key value>

This will create the configuration file in the default location under the user's home directory. The full path for
the configuration file will be <users home directory>/.dct-toolkit/dct-toolkit.properties .

The create_config command takes in the options mentioned below:

Option name Required/optional Description

dctUrl Required HTTP/S URL of the DCT instance.

apiKey Required API key of the account used to connect to the
DCT instance pointed by the dctUrl option.

configFileOutputLocati

on

Optional Fully qualified path of the properties file. If this
option is not specified, the properties file will
be created in the .dct-toolkit folder
under the user's home directory. If this option
is specified, the
DCT_TOOLKIT_CONFIG_FILE environment

variable needs to be exported to point to the
config file, in order for the config file to be
effective.

apiVersion Optional API version to be used for DCT APIs. If this is
not set, the latest API version from the DCT
instance will be used.

apiYamlLocation Optional Location of the local api.yaml file. If this is not
set, the latest api.yaml file will be downloaded
from the DCT instance that is configured.

--insecureSSL Optional Whether to use insecure SSL connection to the
DCT instance. By default, this will be set to
false.

Data Control Tower – Data Control Tower Home

DCT Toolkit – 287

--unsafeHostnameCheck Optional Whether to disable hostname verifier checks
for SSL connection to the DCT instance. By
default, this will be set to false.

sslCertificate Optional PEM format SSL certificate path to be used for
SSL connection to DCT instance.

logLevel Optional Log level to set. Can be one of OFF, ERROR,
WARN, INFO, DEBUG, TRACE, ALL. By default,
the log level will be INFO.

logDir Optional Directory where the logs should be written. By
default, logs will be written to the logs directory
created under the .dct-toolkit folder in
the user's home directory.

All of these options and help can be requested with the following command:

./dct-toolkit create_config -h

All of the above properties can also be individually specified using environment variables. Environment
variable mappings for each of the above properties are as follows:

Property name Environment variable name

dctUrl DCT_TOOLKIT_DCT_URL

apiKey DCT_TOOLKIT_API_KEY

apiVersion DCT_TOOLKIT_API_VERSION

apiYamlLocation DCT_TOOLKIT_API_YAML_LOCATION

--insecureSSL DCT_TOOLKIT_SSL_INSECURE

--unsafeHostnameCheck DCT_TOOLKIT_SSL_UNSAFE_HOSTNAME_CHECK

Data Control Tower – Data Control Tower Home

DCT Toolkit – 288

•

•

sslCertificate DCT_TOOLKIT_SSL_CERT

logLevel DCT_TOOLKIT_LOG_LEVEL

logDir DCT_TOOLKIT_LOG_DIR

Configuring non-sensitive properties in a properties file and sensitive properties (like apiKey) via an
environment variable is acceptable. Properties set via environment variable will take precedence over the
ones specified in the properties file.

Once the required properties are available via either the properties file or the environment variable, dct-toolkit
is ready for use.

13.5 Usage guide
All of the DCT APIs are available as commands in dct-toolkit. To find the list of all commands which are
available, use the following command:

./dct-toolkit -h

This will print the list of all commands grouped by the appropriate entity names.

13.5.1 Examples

The list of available options for a particular command can be requested with the following command:

./dct-toolkit <command_name> -h

There are currently many options for provisioning a VDB, some options are only valid for a particular
DB type. For example, the unique_name option is only applicable to Oracle DBs. For better ease of
use, dct-toolkit has subcommands created under the provisioning command, with options that are
relevant to that particular subcommand. For example, these are the subcommands under the
provision_vdb_by_snapshot command:

oracle
sybase
mssql
appdata
postgres

For provisioning an Oracle VDB, use the following command:

Data Control Tower – Data Control Tower Home

92 https://github.com/json-path/JsonPath

DCT Toolkit – 289

•

•

dct-toolkit provision_vdb_by_snapshot oracle source_data_id=<dsourceId> --
auto_select_repository unique_name=<uniqueName>

For provisioning a Sybase-ASE VDB, use the following command:

dct-toolkit provision_vdb_by_snapshot sybase source_data_id=<dsourceId> --
auto_select_repository --truncate_log_on_checkpoint

For getting the list of registered engines, use the following command:

dct-toolkit get_registered_engines

The above command will only print important fields in the response.
For printing all of the fields in the response, use the following command:

-A/--all-columns

dct-toolkit get_registered_engines -A

To list only the selected columns that are useful to the user, use the following command:

--columns/-c

dct-toolkit get_registered_engines --columns=id,name,cpu_core_count...

For advanced use cases, dct-toolkit also provides an option to specify a jsonpath92 expression to
extract required objects from the JSON response. This can be requested with the following
command:

--jsonpath/-jp

dct-toolkit get_registered_engines --jsonpath=<json path expression starting
with $>

Note, these options are available for all of the commands available in dct-toolkit.
For commands that use a request body, dct-toolkit provides -body , which can be used to specify a
JSON body (instead of using individual options).

https://github.com/json-path/JsonPath
https://github.com/json-path/JsonPath

Data Control Tower – Data Control Tower Home

DCT Toolkit – 290

•

•

•

•

•

•

dct-toolkit token_info --body=<JSON body to POST to DCT>

Help regarding the exact structure of JSON request and response body can be requested for all of the
commands with the following command:

-jh/--jsonhelp

dct-toolkit token_info -jh

dct-toolkit provides an easy to use and understand format for specifying tags. For example, the
following command adds two tags – {key=purpose, value=testing} and {key=key1,

value=value1} :

dct-toolkit create_environment_tags environmentId=<envId> tags purpose=testing
key1=value1

Some of the DCT APIs trigger an asynchronous job and return a jobId in response. dct-toolkit, by
default, will wait for the asynchronous job to be completed and will report the end state of the job.

There is an option to not wait for the completion of an asynchronous job. Use the following
command with the --no-wait option:

dct-toolkit refresh_environment environmentId=<envId> --no-wait

If the user intends on specifying the API key via an environment variable, dct-toolkit provides a
command to get the encrypted version of the API key.

./dct-toolkit encrypt_api_key apiKey=<DCT api key> dctUrl=<DCT instance URL>

13.5.1.1 --json/-js and --csv/-cs option examples

For the --json/-js option, to print the DCT response as it is received from DCT instance users
can use following command:

./dct-toolkit get_environments --json

./dct-toolkit get_environment_by_id environmentId=<environment Id> --json

To print the repositories object from environment object in JSON format users can use following
command:

Data Control Tower – Data Control Tower Home

DCT Toolkit – 291

•

•

1.

2.

./dct-toolkit get_environments --json --expand=repositories

For the --csv/-cs option, to print the DCT response in CSV format users can use the following
command:

./dct-toolkit get_environments --csv

To print the repositories object from the environment object in CSV format users can use the
following command:

./dct-toolkit get_environments --csv --expand=repositories

13.6 API key encryption

13.6.1 Overview

dct-toolkit currently authenticates HTTP requests with an API key. The API key can be configured in plain
text or specified via an environment variable.

13.6.2 Implementation

Starting from 1.2.0 version, dct-toolkit supports encrypting an API key via a separate command and also via
the create_config command used to generate the configuration file. The create_config command
now stores the API key in encrypted format using the AES/GCM algorithm, where the key and IV are
generated from the following two inputs:

Local hostname of the machine from where the dct-toolkit command is run.

DCT URL used to connect to the DCT instance.

For users who want to supply the API key via an environment variable, dct-toolkit provides the
encrypt_api_key command which takes in the API key and DCT URL as inputs and returns an encrypted

API key, which can then be exported to an environment variable. As an example, please refer to the section
below.

Data Control Tower – Data Control Tower Home

DCT Toolkit – 292

13.6.3 Backward compatibility

The dct-toolkit API key encryption feature is fully backward compatible with previous versions of dct-toolkit.
dct-toolkit first tries to decrypt the API key; if it fails to decrypt the API key, then the key is used as
configured.

13.6.4 Example

If the user intends on specifying the API key via an environment variable, then dct-toolkit provides a
command to get the encrypted version of the API key:

./dct-toolkit encrypt_api_key apiKey=<DCT api key> dctUrl=<DCT instance URL>

13.7 Configure multiple DCT instances in dct-toolkit

13.7.1 Overview

This page describes a setup for a case where users need to connect to multiple DCT instances via dct-toolkit
on a single engine. This would be useful in a case like upgrade testing. The user would upgrade the DCT
instance in a lower environment (like a development environment) first, then run test APIs with dct-toolkit.
Once all of the tests are successful, the user can upgrade the higher environment (like a production
environment) and run checks via dct-toolkit. Being able to switch between DCT instances without hassle can
be easily configured in dct-toolkit, as described below.

13.7.2 Example

The user will first need to create separate dct-toolkit configuration files for the environments that need to
connect via dct-toolkit. This can be done by using the configFileOutputLocation option available for

the create_config command:

./dct-toolkit create_config url=https://prod.... api_key=....
configFileOutputLocation=<prod config file path>

The encryption key (not to be confused with the DCT API key) used for encryption is reproducible,
hence, it is possible to encrypt and decrypt the DCT API key without storing the encryption key on
the file system. Anyone with access to the logic to create an encryption key and knows the
inputs for that logic will be able to generate the encryption key, and consequently, will be able to
decrypt the DCT API key.

Data Control Tower – Data Control Tower Home

DCT Toolkit – 293

./dct-toolkit create_config url=https://dev.... api_key=....
configFileOutputLocation=<dev config file path>

Once the configuration files are created, users can create separate aliases for the config files generated
above:

alias dct-toolkit-prod="DCT_TOOLKIT_CONFIG_FILE=<prod config file path>"
alias dct-toolkit-dev="DCT_TOOLKIT_CONFIG_FILE=<dev config file path>"

Once the aliases are set up, users can then switch between production and development environments by
invoking the corresponding aliases.

To get sources from the production environment, use the following command:

dct-toolkit-prod
./dct-toolkit get_sources

To get sources from the development environment, use the following command:

dct-toolkit-dev
./dct-toolkit get_sources

13.8 Logging
dct-toolkit has inbuilt logging support, which will export all of the logs to a default location under the user's
home directory. The full path will be <user home directory>/.dct-toolkit/logs . dct-toolkit
creates a separate log file for every date.

Log level and log directory are both configurable and can be specified in the configuration file or via the
environment variable. Please refer to the Installation and setup page for more information.

Data Control Tower – Data Control Tower Home

93 https://pypi.org/project/delphix-dct-api/
94 https://pkg.go.dev/github.com/delphix/dct-sdk-go

Developer resources – 294

•
•

14 Developer resources
API requests and reporting (see page 294)

API references (see page 295)

14.1 API requests and reporting

14.1.1 Introduction

This article showcases example requests to the various data APIs supported by DCT.

DCT provides interactive API documentation that allows users to experiment with the APIs in their web
browser. The interactive API documentation can be accessed by entering the hostname for DCT and the /api
path into a browser's address bar. For example, if DCT is running on host gateway.example.com, then enter
https://gateway.example.com/api into the browser's address bar.

To simplify development, Python and Go programming libraries are available. The Python bindings can be
found on PyPi here93. The latest version can be installed with the following command:

pip install delphix-dct

The Go bindings can be found on go.dev here94.

14.1.2 Engines

This section showcases some examples of querying the Engines endpoint for information about connected
Delphix Virtualization Engines. These examples leverage the generated Python bindings:

import delphix.api.gateway
import delphix.api.gateway.configuration
import delphix.api.gateway.api.management_api
cfg = delphix.api.gateway.configuration.Configuration()
cfg.host = "https://localhost/v2"

For example purposes

cfg.verify_ssl = False

Replace the string with your own API key

cfg.api_key['ApiKeyAuth'] = 'apk 3.tEd4DXFce'

https://pypi.org/project/delphix-dct-api/
https://pkg.go.dev/github.com/delphix/dct-sdk-go
https://pypi.org/project/delphix-dct-api/
https://pkg.go.dev/github.com/delphix/dct-sdk-go

Data Control Tower – Data Control Tower Home

Developer resources – 295

api_client = delphix.api.gateway.ApiClient(configuration=cfg)
engines_api = delphix.api.gateway.api.management_api.ManagementApi(api_client)
print(engines_api.get_registered_engines())

The result should appear similar to the following:

{'items': [{'connection_status': 'ONLINE',
 'cpu_core_count': 2,
 'data_storage_capacity': 23404216320,
 'data_storage_used': 11589626880,
 'hostname': 'avm.delphix.com',
 'id': 1,
 'insecure_ssl': True,
 'memory_size': 8589934592,
 'name': 'vmname',
 'password': '******',
 'status': 'CREATED',
 'tags': [],
 'type': 'UNSET',
 'unsafe_ssl_hostname_check': False,
 'username': 'admin',
 'uuid': 'ec2fbfea-928b-07f8-94c4-29fea614624f',
 'version': '6.1.0.0'}]}

14.2 API references
The below API references are for DCT version 13.0.0. For the API references of previous versions, please visit
the API references page in the corresponding version’s documentation.

(Open API documentation is only available to view online)

	Welcome to the Data Control Tower documentation!
	Quick references
	Release notes
	New features
	Release 14.0.0
	Release 13.0.0
	Release 12.0.0
	Release 11.0.0
	Release 10.0.0
	Release 9.0.0
	Release 8.0.0
	Release 7.0.0
	Release 6.0.0
	Release 5.0.1
	Release 4.0
	Release 3.0
	Release 2.2

	Fixed issues
	Release 14.0.0.0 changes
	Release 13.0.0.0 changes
	Release 12.0.0.0 changes
	Release 10.0.1 changes
	Release 10.0.0 changes
	Release 9.0.0 changes
	Release 8.0.1 changes
	Release 8.0.0 changes
	Release 7.0.1 changes
	Release 6.0.1 changes
	Release 6.0.0 changes
	Release 5.0.3 changes
	Release 5.0.2 changes
	Release 5.0.1 changes
	Release 3.0.0 changes

	Supported versions and upgrade matrix

	DCT overview
	What is Data Control Tower (DCT)?

	Getting started
	Planning your deployment
	Container platform support
	Kubernetes
	OpenShift
	Docker Compose

	Data Control Tower deployment architecture
	Plan your tagging strategy
	Plan your Access Control strategy

	Deployment
	Kubernetes
	Installation and setup for Kubernetes
	Ingress setup
	Bootstrapping API keys
	DCT logs for Kubernetes
	Admin topics

	OpenShift
	Installation and setup for OpenShift
	OpenShift authentication
	DCT logs for OpenShift
	Admin topics for OpenShift

	Docker Compose
	Installation and setup for Docker Compose
	Bootstrapping API Keys
	Custom configuration
	Docker logs
	Migration topics
	Admin topics for Docker Compose

	Engines: connecting/authenticating
	Introduction
	Truststore for HTTPS
	Authentication with engine
	HashiCorp vault
	TLS certificates

	Accounts: connecting/authenticating
	API keys
	Username/password
	LDAP/Active Directory
	SAML/SSO

	Replace HTTPS certificate for DCT
	External database support
	Overview
	Requirements
	Setup
	Backup and recovery
	External database migration or upgrade
	DCT upgrade

	DCT data backup, recovery, and migration
	Example deployment scenarios
	Prerequisites
	Directions

	Exporting DCT logs to Splunk
	Overview
	Setting up a Splunk instance
	Enable Splunk log forwarding
	Search for events in Splunk

	Generating a support bundle
	Find the “collect_bundle.sh” script
	Execute the “collect_bundle.sh” script when DCT is running in Kubernetes
	Execute the “collect_bundle.sh” script when DCT is running in Docker-Compose
	Find the generated support bundle tar file

	Data governance
	DCT administration
	Operations in DCT
	Tags
	Access Control
	VDB templates
	API metering
	Client telemetry

	Central governance workflows
	Managing engines (Continuous Data)
	Managing dSources
	Managing VDBs
	Managing environments (Continuous Data)
	Managing bookmarks
	Replication management

	Insight reports
	Central governance insights
	VDB Inventory
	dSource Inventory
	Source Ingestion Metrics
	Compliance Job Executions report
	Block Storage
	Activity Audit Log summary
	Compliance Engine Performance report
	Data Engine Performance report

	Tabular customization support for DCT
	Introduction

	Continuous Data workflows
	DevOps TDM
	Developer experience
	Self-service vs. DCT developer experience
	Key similarities
	Key differences

	Creating and managing bookmarks
	Create a Bookmark
	Bookmark API Documentation
	Create a Bookmark at the current time for multiple VDBs
	Creating a bookmark from a chosen timepoint

	VDB operations
	VDB provisioning wizard
	VDB refresh
	Active timelines
	Timeline history
	Locking and unlocking a VDB

	Linking Wizard
	Overview
	Using the Linking Wizard
	Adding an AppData dSource
	Adding an Oracle Staging Push dSource
	Adding a MSSQL Staging Push dSource

	Continuous Compliance workflows
	Listing and searching compliance jobs
	Consolidated operations (intelligent syncing)
	Managing engines (Continuous Compliance)
	Engine overview
	Engine-based operations access

	Compliance jobs
	Job UI
	Copy job
	Execute job
	Migrate job
	Delete job

	Read-only algorithms
	Overview

	Hyperscale Orchestrator UI
	Overview
	Implementation introduction
	Truststore for HTTPS
	Authentication with Hyperscale Orchestrators
	Hyperscale deployment type
	Editing and unregistering Hyperscale Orchestrators

	Managing Hyperscale objects
	Introduction
	Hyperscale executions
	Hyperscale jobs
	Hyperscale job engine selection
	Hyperscale job table configuration
	Executing Hyperscale jobs
	Creating Hyperscale jobs
	Hyperscale Compliance Engines
	Hyperscale mount points
	Hyperscale connector configurations

	Integrations
	DCT concepts
	Introduction
	Concepts
	Virtual Database (VDB) groups
	Comparing Self-Service containers to VDB groups
	Bookmarks
	Jobs
	Tags
	Tag-based filtering

	Nuances
	Stateful APIs
	Local data availability
	Engine-to-DCT API mapping
	Local references to global UUIDs
	Environment representations
	Supported data sources/configurations
	Process feedback

	DCT Toolkit
	Introduction
	Compatibility
	New features
	Version 1.2.0

	Installation and setup
	Installation
	Setup

	Usage guide
	Examples

	API key encryption
	Overview
	Implementation
	Backward compatibility
	Example

	Configure multiple DCT instances in dct-toolkit
	Overview
	Example

	Logging

	Developer resources
	API requests and reporting
	Introduction
	Engines

	API references

