
Data Control Tower Home
Data Control Tower

Exported on 08/15/2023

Data Control Tower – Data Control Tower Home

 – 2

Table of Contents

1 What is Data Control Tower (DCT)? ... 6

2 New features .. 7
2.1 Overview...7

2.2 New in DCT 2.2..7
2.2.1 Deployment.. 7

2.2.2 APIs ... 7

2.2.3 UI... 7

2.3 DCT Features ..8

2.4 Supported APIs...8

3 DCT concepts ... 9
3.1 Introduction ...9

3.2 Concepts...9
3.2.1 Virtual Database (VDB) groups .. 9

3.2.2 Comparing Self-Service containers to VDB groups .. 9

3.2.3 DCT Bookmarks.. 10

3.2.4 DCT Jobs... 10

3.2.5 Tags... 10

3.2.6 Tag-based filtering ... 11

3.3 Nuances ..11
3.3.1 Stateful APIs ... 11

3.3.2 Local data availability.. 11

3.3.3 Engine-to-DCT API mapping .. 12

3.3.4 Local references to global UUIDs .. 12

3.3.5 Environment representations ... 12

3.3.6 Supported data sources/configurations... 12

3.3.7 Process feedback ... 13

3.3.8 API metering instructions .. 13

3.4 Docker Compose ..13
3.4.1 Installation and setup for Docker Compose ... 13

3.4.1.1 Hardware requirements .. 13

3.4.1.2 Installation requirements (Docker Compose) .. 14

Data Control Tower – Data Control Tower Home

 – 3

3.4.1.3 Unpack and install DCT.. 15

3.4.1.4 Run DCT .. 15

3.4.2 Custom configuration .. 16

3.4.2.1 Introduction ... 16

3.4.2.2 Bind mounts ... 16

3.4.3 Docker logs ... 17

3.4.4 Migration topics ... 18

3.4.4.1 Migrate to Kubernetes ... 18

3.4.4.2 Migrate to OpenShift.. 20

3.4.5 Admin topics for Docker Compose.. 23

3.4.5.1 Backup DCT on Docker Compose.. 23

3.4.5.2 Deployment upgrade for Docker Compose .. 23

3.4.5.3 Factory reset DCT for Docker Compose .. 24

3.5 Kubernetes ...25
3.5.1 Installation and setup for Kubernetes .. 25

3.5.1.1 Hardware requirements .. 25

3.5.1.2 Installation requirements (Kubernetes) ... 25

3.5.1.3 Installing DCT ... 26

3.5.2 DCT logs for Kubernetes .. 28

3.5.3 Admin topics for Kubernetes... 28

3.5.3.1 Deployment upgrade for Kubernetes ... 28

3.5.3.2 Factory reset DCT for Kubernetes ... 30

3.6 OpenShift..30
3.6.1 Installation and setup for OpenShift... 30

3.6.1.1 Hardware requirements .. 30

3.6.1.2 Installation requirements (OpenShift).. 30

3.6.1.3 Installation process.. 31

3.6.1.4 Configure Ingress ... 34

3.6.2 OpenShift authentication .. 36

3.6.2.1 Introduction ... 36

3.6.2.2 Enable OAuth2 authentication.. 36

3.6.3 DCT logs for OpenShift... 37

3.6.4 Admin topics for OpenShift ... 37

3.6.4.1 Deployment upgrade for OpenShift.. 37

3.6.4.2 Factory reset DCT for OpenShift.. 39

Data Control Tower – Data Control Tower Home

 – 4

3.7 Developer resources ..39
3.7.1 API requests and reporting.. 39

3.7.1.1 Introduction ... 39

3.7.1.2 Engines ... 40

3.7.2 API references... 40

4 Supported versions.. 42

5 Deployment.. 43
5.1 Engines: connecting/authenticating...44
5.1.1 Introduction ... 44

5.1.2 Truststore for HTTPS ... 44

5.1.3 Authentication with engine ... 45

5.1.4 HashiCorp vault.. 45

5.1.4.1 Vault authentication and registration... 45

5.1.4.2 Token .. 45

5.1.4.3 AppRole .. 46

5.1.5 TLS certificates... 47

5.1.5.1 Retrieving engine credentials.. 47

5.2 Accounts: connecting/authenticating ..47
5.2.1 API keys... 48

5.2.1.1 API keys... 48

5.2.2 Username/password.. 49

5.2.2.1 Password policies .. 51

5.2.2.2 Understanding password policies... 51

5.2.2.3 Default password policy .. 51

5.2.2.4 Changing the password policy .. 51

5.2.2.5 Disabling local username/password authentication ... 52

5.2.3 LDAP/Active Directory.. 52

5.2.3.1 Configuration ... 52

5.2.4 SAML/SSO ... 57

5.2.4.1 Identity provider setup .. 57

5.2.4.2 DCT SAML/SSO setup ... 58

5.2.4.3 Login ... 59

5.2.4.4 Troubleshooting... 59

5.3 Configure LDAP/Active Directory groups ..60

Data Control Tower – Data Control Tower Home

 – 5

5.3.1 Active Directory example... 61

5.3.2 Attributes mapping .. 62

5.4 Replace HTTPS certificate for DCT ..64

6 Authentication ... 65
6.1 Introduction ...65

6.2 API Keys ..65
6.2.1 Bootstrap First API Key .. 65

6.2.2 Create and manage API Keys... 66

6.3 OAuth 2.0 ..67
6.3.1 Enable OpenID connect ... 67

6.4 Replace HTTPS Certificate for APIGW ...69

7 Integrations .. 70

Data Control Tower – Data Control Tower Home

What is Data Control Tower (DCT)? – 6

1 What is Data Control Tower (DCT)?
Today’s application and data landscape is an increasingly complex ecosystem of hosting architectures, often
represented by a multi-cloud landscape coupled with an explosion of different platforms and services. This
fragmented picture of heterogeneous silos makes data governance, automation, and compliance a herculean, if
not, an impossible task.

Data Control Tower (DCT) is an enabling Delphix platform that introduces a data mesh to unify data governance,
automation, and compliance across all applications and cloud platforms.

Data governance is achieved through operational control and visibility of test data across multicloud applications,
databases, environments, and releases. DCT brings data cataloging, tagging, and data access controls for central
governance of all enterprise data, while providing the right data at the right time to development teams.

Data automation at CI/CD speed and enterprise scale is easier and more powerful, by combining DCT with
Continuous Data. A unified API gateway, self-service automation tools, and plug-and-play DevOps integrations
streamline the initial configuration and day-to-day workflows.

DCT with Continuous Compliance provides robust data compliance in lower environments, all while reducing
costs and enabling fast, quality software development.

Data Control Tower – Data Control Tower Home

New features – 7

•

•
•
•
•
•
•
•
•

•
•

•
•
•
•

•
•
•
•

•
•

2 New features

2.1 Overview
Data Control Tower (DCT) is a unified data management platform used to enable API-driven DevOps workflows with
Continuous Data and Compliance, and centrally manage the entire data estate for all Delphix users. The core of DCT
focuses on a centralized, container-based deployment architecture with a robust API library that enables
automation and management across multiple Delphix Engines. The DCT container form factor allows users to self-
host on their preferred public or private cloud environment. For more information, see Upgrade DCT.

2.2 New in DCT 2.2

2.2.1 Deployment
Introducing Kubernetes and OpenShift support

2.2.2 APIs
Registration of Continuous Compliance Engines
Masking Connectors
“Move Masking Job”
Masking of mainframe objects
Provisioning enhancements for Oracle multi-tenant and RAC
LDAP/Active Directory authentication
Password management
Initial access management by Permissions, Roles, Policies, and Access Groups (permissions applied to all
objects of a type e.g. Stop VDB permission on all VDBs)
Distributed tracing and logging (Trace ID propagated down call stack)
Bulk delete of tags

2.2.3 UI
Continuous Data

Added tag support to the Infrastructure page
New dSources page
New VDBs page

Insights
Added an export behavior to the Storage Summary report
New dSource Inventory report
New VDB Inventory report

Admin
New Accounts page

Data Control Tower – Data Control Tower Home

New features – 8

•
•
•
•
•
•
•
•
•
•

2.3 DCT Features
Automation APIs to enable automating compliant data within DevOps pipelines
Reporting APIs to provide central reporting across many Delphix Engines
Terraform Provider for Delphix support, for data infrastructure automation
Engine versions 6.0.0.1 and above are supported for Continuous Data
Connections to Engines over HTTPs (self-provided certificate authority when necessary)
Username/password to authenticate with engines stored in DCT or provided via Password Vault
HashiCorp Vault supported
Audit logging via Nginx access log, self-configured Docker logging going to fluentd, splunk, etc.
Native APIs keys supported for DCT authentication, OAuth2.0 provided via Nginx module
OpenAPI 3.0 spec (self-generated client libraries with open-source tooling)

2.4 Supported APIs

API Description

Engines List engines connected to DCT.

Environments List environments across Engines.

Datasets List sources, dSources, and VDBs across Engines.

Snapshots List Timeflow Snapshots for a dataset.

Bookmarks Bookmark a point in time in a VDB to ease the process of restoring the
VDB later to that point in time.

VDB Provisioning Provision Oracle single instance, MSSQL, or Sybase ASE databases.

VDB Operations Enable, Disable, Start, Stop, Delete, Refresh, Rewind VDBs.

VDB Groups A new grouping mechanism used in conjunction with bookmarks that
was previously supported by VDB Templates in the Self Service module.

Jobs Monitor progress of asynchronous tasks.

Reporting Query across multiple engines to list storage capability, VDB inventory,
and dSource inventory.

Connectivity Checks connectivity between an Engine and a remote host machine.

Data Control Tower – Data Control Tower Home

DCT concepts – 9

•
•
•
•

3 DCT concepts

3.1 Introduction
Data Control Tower (DCT) provides new and novel approaches to general Delphix workflows, delivering a more
streamlined developer experience. This article will introduce these concepts to Delphix and how they work with
DCT.

3.2 Concepts

3.2.1 Virtual Database (VDB) groups
Virtual Database (VDB) groups are a new concept to Delphix, that enables the association of one or more VDBs as a
single VDB group. This allows for bulk operations to be performed on the grouped VDBs, such as bookmark,
provision, refresh, rewind, and others. This will assist in complex application testing scenarios (e.g. integration and
functional testing) that require multiple data sources to properly complete testing.

With VDB groups, developers can now maintain data synchronicity between all grouped VDBs, which is particularly
useful for complex timeflow operations. For example, updating VDBs to reflect a series of schema changes across
data sources, or to reflect an interesting event in all grouped datasets. In order to maintain synchronicity among
grouped datasets, timeflow operations (refresh, rewind, etc.) must use a bookmark reference.

Bookmarks and vdb-groups are loosely related; a vdb-group can exist in the absence of any bookmarks, and a
bookmark can exist without any vdb-group. It is important to note that the bookmark represents data, while the
vdb-group represents the databases to make this data available.

3.2.2 Comparing Self-Service containers to VDB groups
As mentioned above, VDB groups are a crucial DCT concept that enable Self-Service functionality outside of the
Self-Service application. Consider VDB groups acting similarly to Self-Service containers, in that it provides
grouping and synchronization among VDBs, but VDB groups can provide a more flexible approach for users. Here
are some additional points for example:

The same VDB can be included in multiple vdb-groups
Including a VDB in a vdb-group does not prevent operations on the VDB individually
VDBs can be added to or removed from vdb-groups
vdb-groups do not have their own timeline

Additional Information

Bookmarks can be generated from vdb-groups and can be shared with compatible vdb-groups (having
the same underlying databases).

DCT will automatically stop an operation from executing if one or more objects are incompatible (e.g.
provisioning a VDB group into a set of environments, where one of the VDBs is incompatible, such as an
Oracle on Linux VDB provisioned onto a Windows environment).

VDB Groups based operations will return a single Job to monitor the overall status of the series of
individual VDB operations. If one of those individual operations is unable to complete, DCT will report a
“fail”, but any individual operations that are able to successfully complete will still do so.

Data Control Tower – Data Control Tower Home

DCT concepts – 10

•
•
•
•

•
•
•
•

3.2.3 DCT Bookmarks
DCT Bookmarks are a new concept that represents a human-readable snapshot reference that is maintained within
DCT. This is not to be confused with Self Service bookmarks that are maintained separately within the Self Service
application. With DCT Bookmarks, Developers can now reference meaningful data (e.g. capturing a schema version
reference to pair with an associated code version, capturing test failure data so that developers can reproduce the
error in a developer environment, etc.) and use those references for any number of use cases (e.g. versioning data
as code, quickly provisioning a break/fix environment with relevant data, etc.). DCT Bookmarks are compatible with
both VDBs and VDB Groups and can be used as a reference for common timeflow operations such as:

Provisioning a VDB or VDB Group from a bookmark
Refreshing a VDB or VDB Group to a bookmark
Rewinding a VDB or VDB Group to a bookmark
Share (Refresh a VDB or VDB Group from a compatible sibling VDB or VDB Groups’ bookmark) bookmarks
with a compatible testing environment

3.2.4 DCT Jobs
Jobs in DCT are the primary means of providing operation feedback (PENDING, STARTED, TIMEDOUT, RUNNING,
CANCELED, FAILED, SUSPENDED, WAITING, COMPLETED, ABANDONED) for top level operations run on DCT. Top
level operations represent the parent operation that may have one or more child-based jobs (e.g. refreshing a VDB
Group is the parent job to all of the individual refresh jobs for the grouped vdbs under the VDB Group reference).

3.2.5 Tags
DCT Tags enable a new business metadata layer for users and consumers to filter, sort, and identify common
Delphix objects, to power any number of business-driven workflows. A tag is comprised of a (Key:Value) pair that
associates business-level data (e.g. location, application, owner, etc.) with supported objects. The DCT 2.0 and
above release supports the following Tags:

Continuous Data Engines
Environments
dSources
VDBs

Additional Information
DCT Bookmarks have associated retention policies, the default value is 30 days, but policies can be
customized anywhere from a day to an infinite amount of time. Once the Bookmark expires, DCT will
delete the bookmark.
Bookmarks are compatible with individual VDBs and VDB groups. Bookmark Sharing is only available for
engines 6.0.13 and above.
DCT Bookmarks, when created, initiates a snapshot operation on each and every VDB in order to maintain
synchronicity between each VDB. In that same vein, bookmark-based VDB Group operations will have each
VDB-specific sub process run in parallel (as opposed to sequentially) to reduce drift between grouped
VDBs.
Creating a bookmark for a point in time in the past, or for dSources, is not possible.

Top-level jobs will report a “FAILED” status if one or more child jobs fail. For child jobs that can complete,
DCT will continue to complete those jobs even if a parent job reports a failure.

Data Control Tower – Data Control Tower Home

DCT concepts – 11

•

•

Developers and administrators add and remove tags using tag-specific object endpoints (e.g. /vdbs/{vdbId}/

tags) and can leverage tags as search criteria when using the object-specific search endpoints (e.g. using filtering
language to narrow results).

A few sample tag-based use-cases include:

Refreshing all the VDBs owned by a specific App Team using an “Application: Payment Processing” tag. This
would be accomplished by querying “what VDBs have the (Application: Payment Processing) tag" and
feeding those VDB IDs into the refresh endpoint.
Driving Accountability for VDB ownership by tagging primary and secondary owners for each VDB (e.g.
(primary_owner: John Smith), (secondary_owner: Jane Brown)). That way, if a VDB is overdue for a refresh,
tracking down an owner is a simple tag query.

3.2.6 Tag-based filtering
All taggable objects support tag-based filtering for API queries that adhere to the search standards documented in
API References(see page 40) 2.0. A few examples of how tag-based filtering can be used are as follows:

List all VDBs of type 'Oracle' , of which IP address contains the '10.1.100' string and which have been

tagged with the 'team' tag, 'app-dev-1' .

database_type EQ 'Oracle' AND ip_address CONTAINS '10.1.100' and tags CONTAINS { key
EQ 'team' AND value EQ 'app-dev-1'}

3.3 Nuances

3.3.1 Stateful APIs
All applicable DCT APIs are stateful so that running complex queries against a large Delphix deployment can be
done rapidly and efficiently. DCT accomplishes this by periodically gathering and hosting telemetry-based Delphix
metadata from each engine.

3.3.2 Local data availability
DCT currently relies on existing Continuous Data and Compliance constructs around data-environment-engine
relationships. This means that DCT operations require VDBs to live on the engine where the parent dSource lives
and so on.

Tags are registered as an attribute that is specific to an object as opposed to a central tagging service. As
a result, tag-based querying can only be done on a per-object type basis.

A supported object can contain any number of tags.

Data Control Tower – Data Control Tower Home

DCT concepts – 12

•
•
•
•
•
•

3.3.3 Engine-to-DCT API mapping
Wherever possible, DCT has looked to provide an easier-to-consume developer experience. This means that in some
cases, an API on DCT could have an identical API on an engine. However, there are many instances of providing a
higher level abstraction for ease of consumption; one example is the data inventory APIs on DCT (sources,
dSources, VDBs), which are a simplified representation of data represented by the source, sourceconfig, and
repository endpoints on the local engine (source, dSource, and VDB detail are all combined under those three
endpoints).

3.3.4 Local references to global UUIDs
In order to avoid collision of identically-named and referenced objects, DCT generates Universally Unique
IDentifiers (UUID) for all objects. For existing objects on engines like dSources and VDBs, DCT will concatenate the
local engine reference with the engine UUID (e.g. 'Oracle-1' on engine '3cec810a-

ee0f-11ec-8ea0-0242ac120002' will be represented as 'Oracle-1-3cec810a-

ee0f-11ec-8ea0-0242ac120002' on DCT).

3.3.5 Environment representations
Environments within Delphix serve as a reference for the combination of a host and instance. This is coupled with
the fact that environments can be leveraged by multiple engines at the same time and that engines often have a
specific context to some of the elements that comprise an environment. For example, an environment could have
both an Oracle and ASE instance installed and that Engine A leverages an Oracle-based workflow and Engine B
leverages an ASE workflow. DCT will create two identifiers to represent the specific host and instance combinations.
Thus, in DCT, Engine A will be connected to a different uniquely identified Environment than Engine B.

As mentioned earlier with Engine-to-DCT API mapping, DCT aims to simplify the user experience with Delphix APIs
by combining different Continuous Data endpoints into a simplified DCT API. The Environment API does this by
combining environment, repository, and host endpoints so that writing queries against Delphix data is a much
simpler process. One example would be identifying all environments that have a compatible Oracle home for
provisioning:

repositories CONTAINS { database_type EQ 'Oracle' and allow_provisioning EQ true AND
version CONTAINS '19.2.3'}

3.3.6 Supported data sources/configurations
DCT is currently compatible with the most common data sources and configurations supported by Delphix, which
includes:

Oracle Single Instance
Oracle Clusters
SQL Server Single Instance
SQL Server Cluster (Availability Groups)
ASE Single Instance
ASE Clusters

Data Control Tower – Data Control Tower Home

DCT concepts – 13

•

•

3.3.7 Process feedback
Whenever a DCT request completes, it will return a JOB ID as its response. This Job ID can be used in conjunction
with the jobs endpoint to query the operation status.

3.3.8 API metering instructions
DCT employs a per API consumption model, which requires API metering and periodic reporting to Delphix
Customer Success. To support reporting of API consumption, DCT offers an API consumption reporting endpoint:
“api-usage-report”. This report will provide a list of all unique API endpoints and how often they were used over the
specified time period sorted by API and method.

Required Inputs:

File Type: CSV or JSON (CSV file types are compatible with most spreadsheet-style software like excel or
google sheets)
Start/End Date (default start date is “when DCT was installed” and default end date is the “time when the
report was generated”)

Example cURL call:

curl --location --request GET 'https://[Inser_DCT_Server]/v2/reporting/api-usage-
report/?end_date=2022-06-14T09:00-04:00&start_date=2022-06-01T00:00Z' \
--header 'Content-Type: application/json' \
--header 'Accept: text/csv' \
--header 'Authorization: apk 1.xxxxxxxx'

Example Output:

api_endpoint,api_method,api_count
"/v2/management/api-clients",GET,2
"/v2/management/engines",GET,1
"/v2/management/engines/search",POST,1
"/v2/reporting/api-usage-report",GET,2

3.4 Docker Compose

3.4.1 Installation and setup for Docker Compose

3.4.1.1 Hardware requirements
The hardware requirements for Data Control Tower are listed below. In addition to these requirements, inbound
port 443 must be open for API clients, and outbound port 443 to engines.

Data Control Tower – Data Control Tower Home

1 https://docs.docker.com/engine/install/#server
2 https://docs.docker.com/engine/install/
3 https://docs.docker.com/compose/install/
4 https://github.com/docker/cli/releases/tag/v20.10.15
5 https://docs.docker.com/compose/#compose-v2-and-the-new-docker-compose-command
6 https://docs.docker.com/engine/install/linux-postinstall/

DCT concepts – 14

CPU Memory Storage Port

Data Control Tower 4-Core 2GB 50GB 443

3.4.1.2 Installation requirements (Docker Compose)
DCT requires Docker and Docker Compose to run, thus, Linux versions and distributions that have been verified to
work with Docker are supported. To see a list of supported distributions, please reference this Docker article1.

This example uses a Docker installation2 and is completed on an Ubuntu 20.04 VM.

To begin, uninstall any old versions of Docker.

sudo apt-get remove docker docker-engine docker.io containerd runc

Next, update the package lists and install Docker.

sudo apt-get update
sudo apt-get install docker.io

Last, install Docker Compose3.

sudo curl -L "https://github.com/docker/compose/releases/download/1.29.1/docker-
compose-$(uname -s)-$(uname -m)" -o /usr/local/bin/docker-compose
sudo chmod +x /usr/local/bin/docker-compose

Running Docker as non-root (optional)

To avoid prefacing the Docker command with sudo, create a Unix group called docker and add users to it. When the
Docker daemon starts, it creates a Unix socket accessible by members of the Docker group. See Docker Post
Installation6 documentation for details.

Notice

As of 26 April 2022, the latest version of Docker CLI (20.10.154+) comes by default with Docker Compose
V2. Therefore, separate installation for docker-compose would no longer be required. More information
in this regard can be found in this Docker Compose V25 article.

Docker Compose V2 is the supported and DCT recommended version of compose.

https://docs.docker.com/engine/install/#server
https://docs.docker.com/engine/install/
https://docs.docker.com/compose/install/
https://github.com/docker/cli/releases/tag/v20.10.15
https://docs.docker.com/compose/#compose-v2-and-the-new-docker-compose-command
https://docs.docker.com/engine/install/linux-postinstall/
https://docs.docker.com/engine/install/#server
https://docs.docker.com/engine/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/engine/install/linux-postinstall/
https://github.com/docker/cli/releases/tag/v20.10.15
https://docs.docker.com/compose/#compose-v2-and-the-new-docker-compose-command

Data Control Tower – Data Control Tower Home

7 https://download.delphix.com/folder

DCT concepts – 15

sudo groupadd docker
sudo usermod -aG docker $USER

3.4.1.3 Unpack and install DCT
Once Docker and Docker Compose are installed, DCT can be installed. Begin by downloading the latest version of
the tarball from the Delphix Download site7. Next, transfer the file to the Linux machine where Docker is installed.
Run the following commands to extract the containers and load them into Docker:

tar -xzf delphix-dct*.tar.gz
for image in *.tar; do sudo docker load --input $image; done

3.4.1.4 Run DCT
To run DCT, navigate to the location of the extracted docker-compose.yaml file from the tarball and run the
following command. Using -d in the command will start up the application in the background.

sudo docker-compose up -d

Running docker ps should show 9 containers up and running:

sudo docker ps
CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES
75a9df0cae07 delphix-dct-proxy:6.0.0 "/sbin/tini -- /boot…" 7 seconds
ago Up 4 seconds 0.0.0.0:443->8443/tcp delphix-dct-proxy:3.0.0
a23f4fbe0220 delphix-dct-app:6.0.0 "java -jar /opt/delp…" 7 seconds
ago Up 5 seconds delphix-dct-app:6.0.0
96ba8018fa03 delphix-dct-data-library:6.0.0 "/usr/bin/tini -- ./…" 7 seconds
ago Up 5 seconds delphix-dct-data-library:6.0.0
8e5b1e671acc delphix-dct-jobs:6.0.0 "/usr/bin/tini -- ./…" 7 seconds
ago Up 5 seconds delphix-dct-jobs:6.0.0
96049058f025 delphix-dct-data-bookmarks:6.0.0 "/usr/bin/tini -- ./…" 7 seconds
ago Up 5 seconds delphix-dct-data-bookmarks:6.0.0
20d1782cb3bb delphix-dct-ui:6.0.0 "node ./index.js" 7 seconds
ago Up 5 seconds delphix-dct-ui:6.0.0
4fae43c79e8d delphix-dct-virtualization:6.0.0 "/usr/bin/tini -- ./…" 7 seconds
ago Up 5 seconds delphix-dct-virtualization:6.0.0
83d7d661d8a0 delphix-dct-graphql:6.0.0 "/bin/sh -c 'BASE_UR…" 7 seconds
ago Up 6 seconds delphix-dct-graphql:6.0.0
3dded474e28b delphix-dct-postgres:6.0.0 "docker-entrypoint.s…" 7 seconds
ago Up 6 seconds 5432/tcp delphix-dct-postgres:6.0.0

https://download.delphix.com/folder
https://download.delphix.com/folder

Data Control Tower – Data Control Tower Home

8 https://docs.docker.com/storage/bind-mounts/

DCT concepts – 16

3.4.2 Custom configuration

3.4.2.1 Introduction
DCT was designed for users to configure Delphix applications in a way that would meet their security requirements,
which handled with a custom configuration. This article provides background information on performing custom
configurations, which are referenced throughout DCT articles and sections.

3.4.2.2 Bind mounts

Configuration of DCT is achieved through a combination of API calls and the use of Docker bind mounts8. A bind
mount is a directory or file on the host machine that will be mounted inside the container. Changes made to the
files on the host machine will be reflected inside the container. It does not matter where the files live on the host
machine, but the files must be mounted to specific locations inside the container so that the application can find
them.

The DCT and proxy containers can both be configured via separate bind mounted directories. Each container
requires all configuration files to be mounted to the /etc/config directory inside the container. Therefore, it is
recommended to create a directory for each container on the host machine to store all of the configuration files and
mount them to /etc/config . This is done by editing the docker-compose.yaml . Under proxy services,
add a volumes section if one does not already exist; this is used to mount the configuration directory on the host to
/etc/config . For example, if /my/proxy/config is the directory on the host that contains the

configuration files, then the relevant part of the compose file would look like this:

services:
 proxy:
 volumes:
 - /my/proxy/config:/etc/config

To change the configuration of the DCT container, make a similar change under its service section, the only
difference being the directory on the host. After making this change, the application will need to be stopped and
restarted.

The structure of /my/proxy/config will need to match the required layout in /etc/config . When each
container starts, it will create default versions of each file and place them in the expected location. It is highly
recommended to start from the default version of these files. For example, if /my/proxy/config is the bind
mount directory on the host, it could be populated with all the default configuration files by running the following
commands.

First, create an nginx directory inside /my/proxy/config on the host.

cd /my/proxy/config
mkdir nginx

https://docs.docker.com/storage/bind-mounts/
https://docs.docker.com/storage/bind-mounts/

Data Control Tower – Data Control Tower Home

9 https://docs.docker.com/config/containers/logging/
10 https://docs.docker.com/config/containers/logging/configure/
11 https://docs.docker.com/compose/compose-file/compose-file-v3/#logging

DCT concepts – 17

Find the id of the proxy container with docker ps. Look for the container with a delphix-dct-proxy image name. To
determine the user and group ownership for any configuration files, start the containers and open a shell to the
relevant one (nginx in this example), then examine the current user/group IDs associated with the files.

$ docker ps

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES
ac343412492a delphix-dct-proxy:3.0.0 "/bootstrap.sh" 8 minutes ago Up
8 minutes 0.0.0.0:443->443/tcp, :::443->443/tcp dct-packaged_proxy_1

In the above example, ac343412492a is the id. Run the following command to copy the default files to the bind
mount.

docker cp <container id>:/etc/config/nginx /my/proxy/config/nginx

One can always go back to the original configuration by removing the bind-mount and restarting the container or
using docker cp as in the previous example to overwrite the custom files with the default versions.

3.4.3 Docker logs
Docker Compose should only be used to deploy DCT in an evaluation/testing capacity.

DCT leverages the Docker logging9 infrastructure. All containers log to stdout and stderr so that their logs are
processed by Docker. Docker supports logging drivers for a variety of tools such as Fluentd, Amazon CloudWatch,
and Splunk to name a few. See Docker documentation here10 on how to configure them. These changes will need to
be made to the docker-compose.yaml file. This link11 explains how to alter the compose file to adjust the logging
driver. For example, if you want to use syslog for the proxy container then it would look like this:

services:
 proxy:
 logging:
 driver: syslog
 options:
 syslog-address: "tcp://192.123.1.23:123"

https://docs.docker.com/config/containers/logging/
https://docs.docker.com/config/containers/logging/configure/
https://docs.docker.com/compose/compose-file/compose-file-v3/#logging
https://docs.docker.com/config/containers/logging/
https://docs.docker.com/config/containers/logging/configure/
https://docs.docker.com/compose/compose-file/compose-file-v3/#logging

Data Control Tower – Data Control Tower Home

DCT concepts – 18

3.4.4 Migration topics

3.4.4.1 Migrate to Kubernetes

Overview

Installations starting on Docker Compose may be migrated to Kubernetes by moving the persistent data store using
the following steps. In-place upgrades from Docker Compose to Kubernetes are not supported.

Migration Process

Stop DCT services. In order to avoid a situation of losing data, stop serving the upcoming traffic with:

~$ docker-compose stop

Copy the Postgres Docker volume folder data on a local machine with:

~$ mkdir database
~$ docker cp {dbcontainer_Id}:/var/lib/postgresql/data ./database

Copy the encryption key Docker volume folder data on a local machine with:

~$ mkdir data_key
~$ docker cp {gateway_container_id}:/data ./data_key

Move the copied volume folders (database and data_key from the previous step) to the Kubernetes host machine
where DCT is up and running.

Update the values.yaml file to add the list of certificates which were used in the previous DCT version (present in
mounted trustStore). Update the deployment with the new values.yaml file.

Terminate the proxy pod to stop serving external traffic with:

~$ kubectl scale --replicas=0 deployment/proxy -n dct-services

Terminate the database to stop internal threads using the database with:

During the migration process, there will be a downtime period where the service cannot be used.

Mounted Docker volume folder content for database is copied in database folder on local machine.

Mounted Docker volume folder content for encryption key is copied in the data_key folder on local
machine.

Data Control Tower – Data Control Tower Home

DCT concepts – 19

~$ kubectl scale --replicas=0 deployment/database -n dct-services

Create a dummy pod to access the Persistent Volume. Use the Pod.yaml as an example:

apiVersion: v1
kind: Pod
metadata:
Namespace: dct-services
name: dummy-pod
 labels:
 app: dummy-pod
spec:
 containers:
 - image: ubuntu
 command:
 - "sleep"
 - "604800"
 imagePullPolicy: IfNotPresent
 name: ubuntu
 restartPolicy: Always
 volumes:
 - name: gwdatabase-data
 persistentVolumeClaim:
 claimName: gwdatabase-data

Followed by this command to actually create the dummy pod:

~$ kubectl apply -f pod.yaml -n dct-services

Restore previous DCT version volume data with DCT deployed on the Kubernetes setup (in Persistent Volume).

Move the encryption key with:

~$cd data_key
~$ kubectl cp data dct-services/{gateway_pod_name}:/

Move the Postgres data with:

~$cd database
~$ kubectl cp data dct-services/{dummy_pod_name}:/var/lib/postgresql

Delete the dummy pod with:

~$ kubectl delete pod dummy-pod -n dct-services

Start the database pod (scale to 1) with:

Data Control Tower – Data Control Tower Home

DCT concepts – 20

~$ kubectl scale --replicas=1 deployment/database -n dct-services

Delete or patch the gateway pod with:

~ % kubectl delete pod {gateway_pod_name} -n dct-services

Delete or patch the data-library pod with:

~ % kubectl delete pod {data-library_pod_name} -n dct-services

Delete or patch the jobs pod with:

~ % kubectl delete pod {jobs_pod_name} -n dct-services

Delete or patch the data-bookmarks pod with:

~ % kubectl delete pod {data-bookmarks_pod_name} -n dct-services

Start the proxy service to serve the external service:

3.4.4.2 Migrate to OpenShift

Overview

Installations starting on Docker Compose may be migrated to OpenShift by moving the persistent data store using
the following steps. In-place upgrades from Docker Compose to OpenShift are not supported.

Migration Process

Stop DCT services. In order to avoid a situation of losing data, stop serving the upcoming traffic with:

~$ docker-compose stop

Copy the Postgres Docker volume folder data on a local machine with:

~$ mkdir database
~$ docker cp {dbcontainer_Id}:/var/lib/postgresql/data ./database

Copy the encryption key Docker volume folder data on a local machine with:

During the migration process, there will be a downtime period where the service cannot be used.

Data Control Tower – Data Control Tower Home

DCT concepts – 21

~$ mkdir data_key
~$ docker cp {gateway_container_id}:/data ./data_key

Move the copied volume folders (database and data_key from the previous step) to the Kubernetes host machine
where DCT is up and running.

Update the values.yaml file to add the list of certificates which were used in the previous DCT version (present in
mounted trustStore). Update the deployment with the new values.yaml file.

Terminate the proxy pod to stop serving external traffic with:

~$ oc scale --replicas=0 deployment/proxy -n dct-services

Terminate the database to stop internal threads using the database with:

~$ oc scale --replicas=0 deployment/database -n dct-services

Create a dummy pod to access the Persistent Volume. Use the Pod.yaml as an example:

apiVersion: v1
kind: Pod
metadata:
Namespace: dct-services
name: dummy-pod
 labels:
 app: dummy-pod
spec:
 containers:
 - image: ubuntu
 command:
 - "sleep"
 - "604800"
 imagePullPolicy: IfNotPresent
 name: ubuntu
 restartPolicy: Always
 volumes:
 - name: gwdatabase-data
 persistentVolumeClaim:
 claimName: gwdatabase-data

Followed by this command to actually create the dummy pod:

•

•

Mounted Docker volume folder content for database is copied in database folder on local
machine.

Mounted Docker volume folder content for encryption key is copied in the data_key folder on
local machine.

Data Control Tower – Data Control Tower Home

DCT concepts – 22

~$ oc apply -f pod.yaml -n dct-services

Restore previous DCT version volume data with DCT deployed on the Kubernetes setup (in Persistent Volume).

Move the encryption key with:

~$cd data_key
~$ oc cp data dct-services/{gateway_pod_name}:/

Move the Postgres data with:

~$cd database
~$ oc cp data dct-services/{dummy_pod_name}:/var/lib/postgresql

Delete the dummy pod with:

~$ oc delete pod dummy-pod -n dct-services

Start the database pod (scale to 1) with:

~$ oc scale --replicas=1 deployment/database -n dct-services

Delete or patch the gateway pod with:

~ % oc delete pod {gateway_pod_name} -n dct-services

Delete or patch the data-library pod with:

~ % oc delete pod {data-library_pod_name} -n dct-services

Delete or patch the jobs pod with:

~ % oc delete pod {jobs_pod_name} -n dct-services

Delete or patch the data-bookmarks pod with:

~ % oc delete pod {data-bookmarks_pod_name} -n dct-services

Start the proxy service to serve the external service:

~$ oc scale --replicas=1 deployment/proxy -n dct-services

Data Control Tower – Data Control Tower Home

12 https://docs.docker.com/storage/volumes/#backup-restore-or-migrate-data-volumes

DCT concepts – 23

3.4.5 Admin topics for Docker Compose

3.4.5.1 Backup DCT on Docker Compose

This article discusses how to backup DCT. The data that needs to be backed up is the Docker volumes used by the
DCT container, gwdatabase container, and the configuration directories on the host that are bind mounted to the
containers.

The Docker volumes named {xxx}delphix-dct-data and {xxx}delphix-dct-database-data
should be backed up to prevent data loss. This Docker article12 explains how to backup a data volume.

The bind mount directories containing the configuration files are standard directories that can be backed up as
desired. A simple approach would be to create a tar file of the contents. If /my/config is the bind mount directory
on the host, then this can be done with the following command:

tar -czf gateway-backup.tgz /my/config

3.4.5.2 Deployment upgrade for Docker Compose

Introduction

This article describes the procedure to upgrade the DCT version without losing any data. Docker Compose uses the
concept of ‘project’ to create unique identifiers for all of a project’s containers and other resources (like volumes,
etc.).

Docker Compose should only be used to deploy DCT in an evaluation/testing capacity.

Docker Compose should only be used to deploy DCT in an evaluation/testing capacity.

1.

2.

DCT versions 2.0.0 through 6.0.2 running on Docker Compose, that are being upgraded to DCT 7.0.0 or
later, may experience potential failure to start post-upgrade, resulting in a "permission denied" error in
the logs. Operations post-upgrade may also fail with internal errors.
The issue is due to the UID running the application containers changing from UID 1000 (in DCT 2.0.0
through 6.0.2) to UID 1010 (in DCT 7.0.0 and later). Resolving the issues requires the following one-time
change and no container restart is required:

Change ownership of the volume associated to the gateway container to the new UID:
docker exec -u 0 -it <gateway-container-name> chown

delphix:delphix /data
If bind mounts have been used to configure DCT, they must grant permission to the user with UID
1010 (GUID 1010) to read/write files, for example:
chown 1010:1010 /path/to/nginx/bind/mount

https://docs.docker.com/storage/volumes/#backup-restore-or-migrate-data-volumes
https://docs.docker.com/storage/volumes/#backup-restore-or-migrate-data-volumes

Data Control Tower – Data Control Tower Home

DCT concepts – 24

Get the current project name and note it down using the following command:

The volume name would be of the format {project-name}_gateway-data and {project-name}_gwdatabase-
data. In the below example, the project name is delphix-dct.

docker volume ls
DRIVER VOLUME NAME
local delphix-dct_gateway-data
local delphix-dct_gwdatabase-data

Bring down DCT services using the following command:

docker compose down

Refer to the Installation and Setup article to download and extract the new release tarball, then load Docker
images.

Navigate to the extracted directory which contains the docker-compose.yaml file. By default, Docker Compose
uses the extracted folder name as project-name.

With that, either rename the extracted folder to match the project-name and run:

docker compose up -d

OR run the below command with the project-name noted above from step #1 above

docker compose -p <project-name> up -d

3.4.5.3 Factory reset DCT for Docker Compose

This article explains how to factory reset DCT. Factory resetting means deleting all of the configuration and data
associated with DCT. Perform this step only if you are absolutely sure about this and understand the implications.

Bring all of the DCT services down with this command:

Edit the docker-compose.yaml file. Changes made to the docker-compose.yaml prior to upgrade file must
be applied to the newly extracted docker-compose.yaml file.

If the -p argument is used to deploy DCT services, then the corresponding command to bring down the
DCT services would be:

docker compose -p <project-name> down

Docker Compose should only be used to deploy DCT in an evaluation/testing capacity.

Data Control Tower – Data Control Tower Home

DCT concepts – 25

docker compose down

List all Docker volumes being used and note down the volume names:

docker volume ls
DRIVER VOLUME NAME
local dct_gateway-data
local dct_gwdatabase-data

Delete the Docker volumes that are listed from the previous command:

docker volume rm dct_gateway-data
docker volume rm dct_gwdatabase-data

3.5 Kubernetes

3.5.1 Installation and setup for Kubernetes

3.5.1.1 Hardware requirements
The hardware requirements for Data Control Tower (DCT) on Kubernetes are listed below. In addition to these
requirements, inbound port 443 must be open for API clients, and outbound port 443 to engines. This is the
minimum total resource request for the Kubernetes deployment of DCT. Individual service-level resource requests
are contained in values.yaml file and can be overridden during deployment.

CPU: 4-Core
Memory: 16GB
Storage: 50GB
Port: 443

The recommended minimum 50 GB of storage is shared across the Kubernetes cluster (i.e. hosts). All pods and/or
services use this storage for mounted volumes and other utilities including image storage. In a single node cluster,
if shared volumes are not externalized the host requires the full 50 GB. If the persistent volume is mounted
externally, the host requires 39 GB of storage, since the default storage required by the database (10 GB) and
gateway (1 GB) draws from the external storage. The default storage configuration for the database and gateway
can be modified in values.yaml.

3.5.1.2 Installation requirements (Kubernetes)
DCT requires a running Kubernetes cluster to run, kubectl command line tool to interact with Kubernetes cluster
and HELM for deployment on to the cluster.

Requirement DCT Recommended Version Comments

Kubernetes Cluster 1.25 or above

Data Control Tower – Data Control Tower Home

13 https://dlpx-helm-dct.s3.amazonaws.com/
14 https://download.delphix.com/folder/1144/Delphix%20Product%20Releases/DCT

DCT concepts – 26

Requirement DCT Recommended Version Comments

HELM 3.9.0 or above HELM installation should support HELM v3.
More information on HELM can be found at
https://helm.sh/docs/ . To install HELM, follow
the installation instructions at https://helm.sh/
docs/intro/install/ .
DCT also requires access to the HELM
repository from where DCT charts can be
downloaded. The HELM repository URL is
https://dlpx-helm-dct.s3.amazonaws.com13.

kubectl 1.25.0 or above To install kubectl follow the instructions at
https://kubernetes.io/docs/tasks/tools/ .

3.5.1.3 Installing DCT
The latest version of the chart can be pulled locally with the following command:

curl -XGET https://dlpx-helm-dct.s3.amazonaws.com/delphix-dct-7.0.0.tgz -o delphix-
dct-7.0.0.tgz

This command will download a file with the name delphix-dct-7.0.0.tgz in the current working directory. The
downloaded file can be extracted using the following command:

tar -xvf delphix-dct-7.0.0.tgz

This will extract into the following directory structure:

delphix-dct
 |- values.yaml
 |- README.md
 |- Chart.yaml
 |- templates
 |-<all templates files>

For pulling the Docker images from the registry, temporary credentials would need to be configured/overridden in
the values.yaml file. For getting the temporary credentials, visit the Delphix DCT Download14 page and login with
your customer login credentials. Once logged in, select the DCT Helm Repository link and accept the Terms and

If an intermediate HELM repository is to be used instead of the default Delphix HELM repository, then the
repository URL, username, and password to access this repository needs to be configured in the
values.yaml file under imageCredentials section.

https://dlpx-helm-dct.s3.amazonaws.com/
https://download.delphix.com/folder/1144/Delphix%20Product%20Releases/DCT
https://helm.sh/docs/
https://helm.sh/docs/intro/install/
https://dlpx-helm-dct.s3.amazonaws.com/
https://kubernetes.io/docs/tasks/tools/
https://download.delphix.com/folder/1144/Delphix%20Product%20Releases/DCT

Data Control Tower – Data Control Tower Home

DCT concepts – 27

Conditions. Once accepted, login credentials will be presented. Note them down and edit the
imageCredentials.username and imageCredentials.password properties in the values.yaml file

as shown below:

Credentials to fetch Docker images from Delphix internal repository
 imageCredentials:
Username to login to docker registry
 username: <username>
Password to login to docker registry
 password: <password>

imageCredentials:
username: <username>
password: <password>

After extracting the chart, install it using the following command:

helm install dct-services delphix-dct

Once deployment is complete, check the status of the deployment using the following command:

helm list
NAME NAMESPACE REVISION UPDATED
STATUS CHART APP VERSION
dct-services default 1 2023-01-10 19:33:41.713202 -0900
deployed delphix-dct-7.0.0 7.0.0

delphix-dct is the name of the folder which was extracted in the previous step. In the above directory
structure, the values.yaml file contains all of the configurable properties with their default values. These
default values can be overridden while deploying DCT, as per the requirements. If the values.yaml file
needs to be overridden, create a copy of values.yaml and edit the required properties. While deploying
DCT, values.yaml file can be overridden using the following command:

helm install dct-services -f <path to edited values.yaml> <directory

path of the extracted chart>

HELM will internally refer to the kubeconfig file to connect to the Kubernetes cluster. The default
kubeconfig file is present at location: ~/.kube/config

If the kubeconfig file needs to be overridden while running HELM commands, set the KUBECONFIG
environment variable to the location of the kubeconfig file.

Data Control Tower – Data Control Tower Home

DCT concepts – 28

3.5.2 DCT logs for Kubernetes
All DCT containers log to stdout and stderr so that their logs are processed by Kubernetes. To view container level
logs running on the Kubernetes cluster use:

kubectl logs <pod_name> -n dct-services

Log aggregators can be configured to read from stdout and stderr for all of the pods as per the
requirements.

3.5.3 Admin topics for Kubernetes

3.5.3.1 Deployment upgrade for Kubernetes
This article covers the upgrade process for DCT deployments on Kubernetes.

Create a new folder called dct-[version], where [version] is the latest version to which the platform is being
upgraded (i.e. if on 5.0.2, it would be 6.0.0).

$mkdir dct-[version]

Download the new version of chart using the following command in tandem with the newly created folder.

$cd dct-[version]
$curl -XGET https://dlpx-helm-dct.s3.amazonaws.com/delphix-dct-[version].tgz -o
delphix-dct-[version].tgz

The downloaded file is then extracted using the following command:

$tar -xvf delphix-dct-[version].tgz

Which will extract into the following directory structure:

delphix-dct
 |- values.yaml

Assuming an ingress controller configuration on the Kubernetes cluster is present, when accessing DCT
after the deployment, the ingress controller rule needs to be added for proxy service, along with port 443
(if SSL is enabled) and port 80 (if SSL is disabled).

This command will download a file named delphix-dct-[version].tgz in the folder dct-[version].

Data Control Tower – Data Control Tower Home

15 https://download.delphix.com/
16 https://download.delphix.com/

DCT concepts – 29

•

•

•

 |- README.md
 |- Chart.yaml
 |- templates
 |-<all templates files>

Copy the values.yaml file from the previous version parallel to the dct-[version] folder.

Since the Docker Registry (AWS ECR) expires after 12 hours, the Docker Registry should be modified in the
values.yaml (from the previous existing version) with the latest password. It can be obtained from https://
download.delphix.com15. Here are some notes in regards to this step in the process:

This password update in values.yaml is only required if the user using Delphix provided a Docker Registry
directly in the deployment (i.e. values.yaml).
In case a user is using their internal Docker Registry, they should first pull the next version of the Docker
images from the Delphix provided registry, using a new password.
Steps to pull Docker images from the Docker Registry:

Docker login command (password from https://download.delphix.com16):

$docker login --username AWS --password [PASSWORD] 762392488304.dkr.ecr.us-west-2.ama
zonaws.com/delphix-dct

Pull Docker images of DCT Services:

$ docker pull
762392488304.dkr.ecr.us-west-2.amazonaws.com/delphix-dct:nginx-[VERSION]
$ docker pull
762392488304.dkr.ecr.us-west-2.amazonaws.com/delphix-dct:app-[VERSION]
$ docker pull
762392488304.dkr.ecr.us-west-2.amazonaws.com/delphix-dct:data-bookmarks-[VERSION]
$ docker pull
762392488304.dkr.ecr.us-west-2.amazonaws.com/delphix-dct:delphix-data-library-
[VERSION]
$ docker pull
762392488304.dkr.ecr.us-west-2.amazonaws.com/delphix-dct:graphql-[VERSION]
$ docker pull
762392488304.dkr.ecr.us-west-2.amazonaws.com/delphix-dct:ui-[VERSION]
$ docker pull
762392488304.dkr.ecr.us-west-2.amazonaws.com/delphix-dct:jobs-[VERSION]
$ docker pull
762392488304.dkr.ecr.us-west-2.amazonaws.com/delphix-dct:postgres-[VERSION]
$ docker pull
762392488304.dkr.ecr.us-west-2.amazonaws.com/delphix-dct:virtualization-[VERSION]

The last step is to run the helm upgrade command:

This values.yaml file contains modified values from the existing previous version of deployment.

https://download.delphix.com/
https://download.delphix.com/
https://download.delphix.com/
https://download.delphix.com/

Data Control Tower – Data Control Tower Home

DCT concepts – 30

helm upgrade -f values.yaml dct-services delphix-dct

3.5.3.2 Factory reset DCT for Kubernetes
To clean DCT installation run following command:

helm delete dct-services

3.6 OpenShift

3.6.1 Installation and setup for OpenShift

3.6.1.1 Hardware requirements
The hardware requirements for Data Control Tower to deploy on OCP are listed below. In addition to these
requirements, inbound port 443 or 80 must be open for API clients. This is the minimum total resource requirement
for the deployment.

CPU: 4-Core
Memory: 16GB
Storage: 50GB
Port: 443

3.6.1.2 Installation requirements (OpenShift)
DCT requires a running OpenShift cluster to run, oc command line tool to interact with OpenShift cluster and HELM
for deployment on to the cluster.

Requirement DCT Recommended Version Comments

OpenShift Cluster 4.12 or above

HELM 3.9.0 or above HELM installation should support
HELM v3. More information on
HELM can be found at https://
helm.sh/docs/ . To install HELM,
follow the installation instructions
at https://helm.sh/docs/intro/
install/ .
DCT also requires access to the

This process will delete services pod and database both.

https://helm.sh/docs/
https://helm.sh/docs/intro/install/

Data Control Tower – Data Control Tower Home

17 https://dlpx-helm-dct.s3.amazonaws.com/

DCT concepts – 31

Requirement DCT Recommended Version Comments

HELM repository from where DCT
charts can be downloaded. The
HELM repository URL is https://
dlpx-helm-
dct.s3.amazonaws.com17.

oc 4.11.3 or above To install oc follow the instructions
at https://docs.openshift.com/
container-platform/4.8/
cli_reference/openshift_cli/
getting-started-cli.html .

3.6.1.3 Installation process

Jumpbox setup

OC login

Run the OC login command to authenticate OpenShift CLI with the server.

oc login https://openshift1.example.com --token=<<token>>

Verify KubeConfig

HELM will use the configuration file inside the $HOME/.kube/ folder to deploy artifacts on an OpenShift cluster.

Be sure the config file has the cluster context added, and the current-context is set to use this cluster. To verify the
context, run this command:

oc config current-context

Create a new project

Create a new project named dct-services using the command below:

If an intermediate HELM repository is to be used instead of the default Delphix HELM repository, then the
repository URL, username, and password to access this repository needs to be configured in the
values.yaml file under imageCredentials section.

https://dlpx-helm-dct.s3.amazonaws.com/
https://dlpx-helm-dct.s3.amazonaws.com/
https://docs.openshift.com/container-platform/4.8/cli_reference/openshift_cli/getting-started-cli.html

Data Control Tower – Data Control Tower Home

DCT concepts – 32

oc new-project dct-services --description="DCT Deployment project" --display-name="dc
t-services"

Installing Helm

Install HELM using the following installation instructions mentioned at https://helm.sh/docs/intro/install/.

DCT also requires access to the HELM repository from where DCT charts can be downloaded. Run the following
commands to add the repository:

curl -XGET https://dlpx-helm-dct.s3.amazonaws.com/delphix-dct-7.0.0.tgz -o delphix-
dct-7.0.0.tgztar -xvf delphix-dct-7.0.0.tgz

Deploy DCT chart

Find and update fsGroup values.yaml file

The fsGroup field is used to specify a supplementary group ID. All processes of the container, the owner of the
volume, and any files created on the volume are also part of this supplementary group ID.

For OpenShift deployment, this value need to be specified in the values.yaml file.

Find the allowed supplementary group range:

oc get project dct-services -o yaml

A response should appear as follows:

apiVersion: project.openshift.io/v1
kind: Project
metadata:
 annotations:
 openshift.io/description: ""
 openshift.io/display-name: ""
 openshift.io/requester: cluster-admin
 openshift.io/sa.scc.mcs: s0:c32,c4
 openshift.io/sa.scc.supplemental-groups: 1001000000/10000
 openshift.io/sa.scc.uid-range: 1001000000/10000
 creationTimestamp: "2023-01-18T10:33:04Z"
 labels:
 kubernetes.io/metadata.name: dct-services
 pod-security.kubernetes.io/audit: restricted
 pod-security.kubernetes.io/audit-version: v1.24
 pod-security.kubernetes.io/warn: restricted
 pod-security.kubernetes.io/warn-version: v1.24
 name: dct-services
 resourceVersion: "99974"
 uid: ccdd5c9f-2ce5-49b4-91a7-662e0598b63b

https://helm.sh/docs/intro/install/

Data Control Tower – Data Control Tower Home

DCT concepts – 33

spec:
 finalizers:
 - kubernetes
status:
 phase: Active

Copy the first value from the openshift.io/sa.scc.supplemental-groups line, before the slash (e.g.
1001000000).

Paste this value in the values.yaml file:

Define SecurityContextConstraints for the pod
podSecurityContext:
 fsGroup: 1001000000

Create values.yaml file

Create a values.yaml file and update the properties according to your environment. A sample values.yaml file can
be downloaded below.

values.yaml

(see page 30)

Deploy DCT

Run the following command to deploy the DCT chart:

helm install -f <path to edited values.yaml> dct-services apigw-repo/delphix-dct –
version=7.0.0

Verify deployment

All the images will be downloaded and then deployed. If some pods restarted at the startup, this is expected. After
some time, a total of 9 pods will be in running status and one job pod will be in completed status.

Data Control Tower – Data Control Tower Home

DCT concepts – 34

oc get pods -n dct-services

Find API key

For the very first deployment bootstrap API key will be printed in logs, please view gateway pod logs and find for
“NEWLY GENERATED API KEY”. the value is the API key.

oc logs <gateway-pod-name> -n dct-services

3.6.1.4 Configure Ingress
DCT only works with HTTPS Ingress, the UI does not support HTTP.

Creating route

To create a route, you can use the OpenShift console and create a new one for the DCT service.

If SSL is terminated at this route, only then should the useSSL value in values.yaml be updated to false, so that 80
port will be exposed in proxy service and can be used to configure the route. The following screenshot shows the
route that forwards requests to 80 port of proxy service:

Data Control Tower – Data Control Tower Home

DCT concepts – 35

If SSL is not terminated at the Route level, then create a PassTrough route and use 443 port of the proxy service, and
configure the SSL certificate and key in the values.yaml file:

Data Control Tower – Data Control Tower Home

DCT concepts – 36

3.6.2 OpenShift authentication

3.6.2.1 Introduction
DCT uses Nginx/OpenResty as an HTTP server and a reverse proxy for the application. Using the default
configuration, all connections to DCT are over HTTPS and require the user to authenticate. There are three
supported methods for authentication; API keys, Username/Password, and OpenID Connect.

3.6.2.2 Enable OAuth2 authentication
By default APIKey authentication will be enabled and when DCT starts it will generate a new API key(see page 48) in
logs if you want to enable openId connect authentication then follow below procedure:

Update the below properties in the values.yaml file and restart DCT:

Data Control Tower – Data Control Tower Home

DCT concepts – 37

flag to enable api_key based authentication
apiKeyEnabled: false
flag to enable OAuth2 based authentication
openIdEnabled: true
URL of the discovery endpoint as defined by the OpenId Connect Discovery
specification. This needs to be set if 'openIdEnabled' is set to true
openIdServerUrl: https://delphix.okta.com/oauth2/default/.well-known/oauth-
authorization-server
OAuth2 jwt claim name that should be used as client_id
jwtClaimForClientId: sub
OAuth2 jwt claim name that should be used as client_name
jwtClaimForClientName: sub

3.6.3 DCT logs for OpenShift
All DCT containers log to stdout and stderr, so that their logs are processed by OpenShift. To view container level
logs running on the OpenShift cluster, use this command:

oc logs <pod_name> -n dct-services

Log aggregators can be configured to read from stdout and stderr for all of the pods as per the requirements.

3.6.4 Admin topics for OpenShift

3.6.4.1 Deployment upgrade for OpenShift
This article covers the upgrade process for DCT deployments on Kubernetes.

Create a new folder called dct-[version], where [version] is the latest version to which the platform is being
upgraded (i.e. if on 5.0.2, it would be 6.0.0).

$mkdir dct-[version]

Download the new version of chart using the following command in tandem with the newly created folder.

$cd dct-[version]
$curl -XGET https://dlpx-helm-dct.s3.amazonaws.com/delphix-dct-[version].tgz -o
delphix-dct-[version].tgz

The downloaded file is then extracted using the following command:

This command will download a file named delphix-dct-[version].tgz in the folder dct-[version].

Data Control Tower – Data Control Tower Home

18 https://download.delphix.com/
19 https://download.delphix.com/

DCT concepts – 38

•

•

•

$tar -xvf delphix-dct-[version].tgz

Which will extract into the following directory structure:

delphix-dct
 |- values.yaml
 |- README.md
 |- Chart.yaml
 |- templates
 |-<all templates files>

Copy the values.yaml file from the previous version parallel to the dct-[version] folder.

Since the Docker Registry (AWS ECR) expires after 12 hours, the Docker Registry should be modified in the
values.yaml (from the previous existing version) with the latest password. It can be obtained from https://
download.delphix.com18. Here are some notes in regards to this step in the process:

This password update in values.yaml is only required if the user using Delphix provided a Docker Registry
directly in the deployment (i.e. values.yaml).
In case a user is using their internal Docker Registry, they should first pull the next version of the Docker
images from the Delphix provided registry, using a new password.
Steps to pull Docker images from the Docker Registry:

Docker login command (password from https://download.delphix.com19):

$docker login --username AWS --password [PASSWORD] 762392488304.dkr.ecr.us-west-2.ama
zonaws.com/delphix-dct

Pull Docker images of DCT Services:

$ docker pull
762392488304.dkr.ecr.us-west-2.amazonaws.com/delphix-dct:nginx-[VERSION]
$ docker pull
762392488304.dkr.ecr.us-west-2.amazonaws.com/delphix-dct:app-[VERSION]
$ docker pull
762392488304.dkr.ecr.us-west-2.amazonaws.com/delphix-dct:data-bookmarks-[VERSION]
$ docker pull
762392488304.dkr.ecr.us-west-2.amazonaws.com/delphix-dct:delphix-data-library-
[VERSION]
$ docker pull
762392488304.dkr.ecr.us-west-2.amazonaws.com/delphix-dct:graphql-[VERSION]
$ docker pull
762392488304.dkr.ecr.us-west-2.amazonaws.com/delphix-dct:ui-[VERSION]

This values.yaml file contains modified values from the existing previous version of deployment.

https://download.delphix.com/
https://download.delphix.com/
https://download.delphix.com/
https://download.delphix.com/

Data Control Tower – Data Control Tower Home

20 http://gateway.example.com/
21 https://pypi.org/project/delphix-dct-api/
22 https://pkg.go.dev/github.com/delphix/dct-sdk-go

DCT concepts – 39

$ docker pull
762392488304.dkr.ecr.us-west-2.amazonaws.com/delphix-dct:jobs-[VERSION]
$ docker pull
762392488304.dkr.ecr.us-west-2.amazonaws.com/delphix-dct:postgres-[VERSION]
$ docker pull
762392488304.dkr.ecr.us-west-2.amazonaws.com/delphix-dct:virtualization-[VERSION]

The last step is to run the helm upgrade command:

helm upgrade -f values.yaml dct-services delphix-dct

3.6.4.2 Factory reset DCT for OpenShift
To clean DCT installation run following command:

helm delete dct-services:

3.7 Developer resources

3.7.1 API requests and reporting

3.7.1.1 Introduction
This article showcases example requests to the various data APIs supported by DCT.

DCT provides interactive API documentation that allows users to experiment with the APIs in their web browser.
The interactive API documentation can be accessed by entering the hostname for DCT and the /api path into a
browser's address bar. For example, if DCT is running on host gateway.example.com20, then enter https://
gateway.example.com/api into the browser's address bar.

To simplify development, Python and Go programming libraries are available. The Python bindings can be found
on PyPi here21. The latest version can be installed with the following command:

pip install delphix-dct

The Go bindings can be found on go.dev here22.

This process will delete both services pod and database.

http://gateway.example.com/
https://pypi.org/project/delphix-dct-api/
https://pkg.go.dev/github.com/delphix/dct-sdk-go
http://gateway.example.com/
https://gateway.example.com/api
https://pypi.org/project/delphix-dct-api/
https://pkg.go.dev/github.com/delphix/dct-sdk-go

Data Control Tower – Data Control Tower Home

DCT concepts – 40

3.7.1.2 Engines
This section showcases some examples of querying the Engines endpoint for information about connected Delphix
Virtualization Engines. These examples leverage the generated Python bindings:

import delphix.api.gateway
import delphix.api.gateway.configuration
import delphix.api.gateway.api.management_api
cfg = delphix.api.gateway.configuration.Configuration()
cfg.host = "https://localhost/v2"

For example purposes

cfg.verify_ssl = False

Replace the string with your own API key

cfg.api_key['ApiKeyAuth'] = 'apk 3.tEd4DXFce'
api_client = delphix.api.gateway.ApiClient(configuration=cfg)
engines_api = delphix.api.gateway.api.management_api.ManagementApi(api_client)
print(engines_api.get_registered_engines())

The result should appear similar to the following:

{'items': [{'connection_status': 'ONLINE',
 'cpu_core_count': 2,
 'data_storage_capacity': 23404216320,
 'data_storage_used': 11589626880,
 'hostname': 'avm.delphix.com',
 'id': 1,
 'insecure_ssl': True,
 'memory_size': 8589934592,
 'name': 'vmname',
 'password': '******',
 'status': 'CREATED',
 'tags': [],
 'type': 'UNSET',
 'unsafe_ssl_hostname_check': False,
 'username': 'admin',
 'uuid': 'ec2fbfea-928b-07f8-94c4-29fea614624f',
 'version': '6.1.0.0'}]}

3.7.2 API references
To access the API list for DCT version 2.2.0, click the link below and the .html file with the API content will download.

Data Control Tower – Data Control Tower Home

DCT concepts – 41

DCT v2.0.0 API.html

(see page 40)

Data Control Tower – Data Control Tower Home

Supported versions – 42

4 Supported versions
Data Control Tower has minimum engine versions that are actively tested against to ensure optimal
interoperability. Please ensure that all connected engines meet the version requirements:

Delphix Engine Version

Continuous Data 6.0.0.1 or higher

Continuous Compliance 6.0.13.0 or higher

Data Control Tower – Data Control Tower Home

Deployment – 43

5 Deployment
Data Control Tower is a container-based architecture and is currently certified with Kubernetes and OpenShift to
align with common enterprise container standards. The DCT architecture is comprised of multiple micro-services
that are each run on individual pods. This lends DCT to be a highly flexible and resilient deployment by enabling
customers and IT organizations to enact their own backup, scaling, and resiliency standards associated with
hosting container-based applications. Below is an architectural diagram of all the services that make up DCT as well
as the persistent storage for maintaining relationship metadata.

DCT is multi-cloud enabled, which means that a single DCT instance can be deployed to orchestrate (via HTTPS)
Continuous Data and Continuous Compliance workloads with Delphix engines located in other networks.
Alternatively, DCT can be localized to engines located within a network. DCT is a lightweight management
application, which means that it does not require a highly performant connection to complete its work and can
serve as a central management layer for Delphix engines globally.

Data Control Tower – Data Control Tower Home

Deployment – 44

This section will explain all of the required steps to deploy DCT on your container platform of choice.

5.1 Engines: connecting/authenticating

5.1.1 Introduction
After DCT Authentication is complete, the HTTPS should be securely configured on DCT and able to be
authenticated against. The next step is to register an engine with DCT so that it can fetch results. DCT connects to
all engines over HTTPS, thus some configurations might be required to ensure it can communicate successfully.

5.1.2 Truststore for HTTPS
If the CA certificate that signed the engine's HTTPS certificate is not a trusted root CA certificate present in the JDK,
then custom CA certificates can be provided to DCT. If these certificates are not provided, a secure HTTPS
connection cannot be established and registering the engine will fail. The insecure_ssl engine registration
parameter can be used to bypass the check, however, this should not be used unless the risks are understood.

Get the public certificate of the CA that signed the engine’s HTTPS certificate in PEM format. IT team help may be
required to get the correct certificates. Base64 encode the certificate with:

cat mycertfile.pem | base64 -w 0

Copy the Base64 encoded value from the previous step and configure in values.yaml file under
truststoreCertificates section. e.g. section will look like this:

truststoreCertificates:
<certificate_name>.crt: <base64 encode certificate string value in single line>

<certificate_name> can be any logically valid string value for e.g. “engine”.

Data Control Tower – Data Control Tower Home

23 https://www.vaultproject.io/docs/auth/token
24 https://www.vaultproject.io/docs/auth/approle
25 https://www.vaultproject.io/docs/auth/cert
26 https://www.vaultproject.io/docs/commands

Deployment – 45

All the certificates configured in truststoreCertificates section will be read and included in the trustStore which
would be then used for SSL/TLS communication between DCT and Delphix Engine.

5.1.3 Authentication with engine
All authentication with the Delphix Engine is done with the username and password of a domain admin engine user.
There are two methods of storing these credentials with DCT. They can either be stored and encrypted on DCT itself
or retrieved from a password vault. We recommend fetching the credentials from a vault. Currently only the
HashiCorp vault is supported.

5.1.4 HashiCorp vault
There are two high-level steps to configuring a HashiCorp vault. The first is to set up authentication with the vault
and register the vault. The second is to tell DCT how to get the specific engine credentials needed from that
registered vault. A single vault can be used for multiple different Delphix Engines.

5.1.4.1 Vault authentication and registration

First, DCT needs to be able to authenticate with the vault. DCT supports the Token23, AppRole24, and TLS
Certificates25 authentication methods. This is done by passing a command to the HashiCorp CLI26. It is
recommended to first ensure that successful authentication is done and one can retrieve the credentials with the
HashiCorp CLI directly to ensure the correct commands are passed to DCT.

Adding a vault to DCT is done through API calls to the /v2/management/vaults/hashicorp endpoint. All
authentication methods requires the location of the vault is provided through the env_variables property in the
POST body like so:

"env_variables": {
 "VAULT_ADDR": "https://10.119.132.40:8200"
 }

5.1.4.2 Token
To use the token authentication method, this needs to be included as part of the env_variables field. The full
example to register the vault would appear as:

curl --location --request POST 'https://<hostname>/v2/management/vaults/hashicorp' \
--header 'Content-Type: application/json' \
--header 'Accept: application/json' \
--header 'Authorization: apk <your API key>' \
--data-raw '{
 "env_variables": {
 "VAULT_TOKEN": "<your token>"

https://www.vaultproject.io/docs/auth/token
https://www.vaultproject.io/docs/auth/approle
https://www.vaultproject.io/docs/auth/cert
https://www.vaultproject.io/docs/commands
https://www.vaultproject.io/docs/auth/token
https://www.vaultproject.io/docs/auth/approle
https://www.vaultproject.io/docs/auth/cert
https://www.vaultproject.io/docs/commands

Data Control Tower – Data Control Tower Home

Deployment – 46

 "VAULT_ADDR": "https://10.119.132.40:8200"
 }
}'

A response should be received similar to the lines below:

{
 "id": 2,
 "env_variables": {
 "VAULT_TOKEN": "<your token>"
 "VAULT_ADDR": "https://10.119.132.40:8200"
 }
}

Note the id of the vault, this will be needed in the next step to register the engine.

5.1.4.3 AppRole
To use the AppRole authentication method, this needs to be included as part the login_command_args field, as
shown below.

"login_command_args":
 ["write", "auth/approle/login", "role_id=1", "secret_id=123"]

The full example to register the vault would appear as:

curl --location --request POST 'https://<hostname>/v2/management/vaults/hashicorp' \
--header 'Content-Type: application/json' \
--header 'Accept: application/json' \
--header 'Authorization: apk <your API key>' \
--data-raw '{
 "env_variables": {
 "VAULT_ADDR": "https://10.119.132.40:8200"
 },
 "login_command_args":
 ["write", "auth/approle/login", "role_id=1", "secret_id=123"]
}'

 A response should be received similar to the lines below:

{
 "id": 2,
 "env_variables": {
 "VAULT_TOKEN": "<your token>"
 "VAULT_ADDR": "https://10.119.132.40:8200"
 }
}

Data Control Tower – Data Control Tower Home

27 https://openresty.org/en/

Deployment – 47

5.1.5 TLS certificates
The configuration of mutual TLS authentication requires an additional step. This feature currently is NOT supported
for Kubernetes deployment of DCT. This will be covered in later releases.

5.1.5.1 Retrieving engine credentials
Once DCT can authenticate with the vault, it needs to know how to fetch the relevant engine credentials. When
registering an engine, the user will need to provide the HashiCorp CLI commands through the
hashicorp_vault_username_command_args and hashicorp_vault_password_command_args

parameters.

The relevant part of the engine registration payload will look like the following:

'{
 "hashicorp_vault_id": 1
 "hashicorp_vault_username_command_args": ["kv", "get", "-field=username", "kv-
v2/delphix-engine-secrets/engineUser"]
,
 "hashicorp_vault_password_command_args": ["kv", "get", "-field=password", "kv-
v2/delphix-engine-secrets/engineUser"]
}'

The hashicorp_vault_id will be the ID that was returned as part of the previous step. Note that the exact paths to
fetch the username and password will vary depending on the exact configuration of the vault.

5.2 Accounts: connecting/authenticating
There are 5 supported methods for authentication; API keys, Username/Password, LDAP/Active Directory, SAML/
SSO, and OpenID Connect. These authentication methods are detailed on the corresponding pages in this section.

DCT uses Nginx/OpenResty27 as an HTTP server and a reverse proxy for the application. Using the default
configuration, all connections to DCT are over HTTPS and require the user to authenticate. The Nginx/
OpenResty configuration files can be edited via /etc/config bind mounts, for the proxy container to
customize the HTTP server and change options (such as TLS versions).

https://openresty.org/en/
https://openresty.org/en/

Data Control Tower – Data Control Tower Home

28 https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Authorization

Deployment – 48

5.2.1 API keys

5.2.1.1 API keys
API keys are the default method to authenticate with DCT. This is done by including the key in the HTTP
Authorization request header28 with type apk. A cURL example using an example key of
1.0p9PMkZO4Hgy0ezwjhX0Fi4lEKrD4pflejgqjd0pfKtywlSWR9G0fIaWajuKcBT3 would appear as:

curl --header 'Authorization: apk
1.0p9PMkZO4Hgy0ezwjhX0Fi4lEKrD4pflejgqjd0pfKtywlSWR9G0fIaWajuKcBT3'

Create and manage API Keys

The initial API key created should be used to create a new admin secure key. This is done by creating a new Account
entity and setting the generate_api_key. The "username" attribute should be the desired name to uniquely identify
the account.

curl --location --request POST 'https://<hostname>/v2/management/accounts' \
--header 'Content-Type: application/json' \
--header 'Accept: application/json' \
--header 'Authorization: apk
1.0p9PMkZO4Hgy0ezwjhX0Fi4lEKrD4pflejgqjd0pfKtywlSWR9G0fIaWajuKcBT3' \
--data-raw '{
 "username": "secure-key",
 "generate_api_key": true
}'

A response should be received similar to the lines below:

{
 "id": 2,
 "token": "2.vCfC0MnpySYZLshuxap2aZ7xqBKAnQvV7hFnobe7xuNlHS9AF2NQnV9XXw4UyET6"
 "username":"secure-key"
}

cURL (like web browsers and other HTTP clients) will not connect to DCT over HTTPS unless a valid TLS
certificate has been configured for the Nginx server. If this configuration step(see page 64) has not been
performed yet and the risk is comprehended, you may disable the check in the HTTP client. For instance,
this can done with cURL using the --insecure flag. The cURL version must be 7.43 or higher.

If the cURL version being used is below 7.43, replace the --data-raw option with --data.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Authorization
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Authorization

Data Control Tower – Data Control Tower Home

Deployment – 49

Now that the new and secure API key is created, the old one must be deleted for security reasons since the key
appeared in the logs. To do this make the following request:

curl --location --request DELETE 'https://<hostname>/v2/management/api-clients/<id>'
 \
--header 'Content-Type: application/json' \
--header 'Accept: application/json' \
--header 'Authorization: apk
2.vCfC0MnpySYZLshuxap2aZ7xqBKAnQvV7hFnobe7xuNlHS9AF2NQnV9XXw4UyET6'

The id referenced above is the numeric id of the Account. It is the integer before the period in the token. For
example, the id of 1.0p9PMkZO4Hgy0ezwjhX0Fi4lEKrD4pflejgqjd0pfKtywlSWR9G0fIaWajuKcBT3
is 1.

Finally, to list all of the current Accounts, make the following request:

curl --location --request GET 'https://<hostname>/v2/management/accounts/' \
--header 'Content-Type: application/json' \
--header 'Accept: application/json' \
--header 'Authorization: apk <your API key>'

5.2.2 Username/password
When creating an account, a username and password combination can be associated with the account (whether an
API Key was generated for the account or not). To do so, specify the “username” and “password” properties in the
API request, for example:

curl -k --location --request POST 'https://<hostname>/v2/management/accounts' \
 --header 'Content-Type: application/json' \
 --header 'Accept: application/json' \
 --header 'Authorization: apk
1.0p9PMkZO4Hgy0ezwjhX0Fi4lEKrD4pflejgqjd0pfKtywlSWR9G0fIaWajuKcBT3' \
 --data-raw '{
 "username": "some-username",
 "password": "some-password",
 "generate_api_key": false
 "is_admin": true
}'

The username and password combination can then be used to login via the UI, or to fetch a temporary access token
valid for 24 hours. To do so, call the ‘login’ API endpoint:

curl -k --location --request POST 'https://<hostname>/v2/login' \

The is_admin property will create the account with admin privileges. Remove this property to create an
account without admin privileges.

Data Control Tower – Data Control Tower Home

29 https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Authorization

Deployment – 50

 --header 'Content-Type: application/json' \
 --header 'Accept: application/json' \
 --data-raw '{
 "username": "some-username",
 "password": "some-password"
}'

A response should be received similar to the lines below:

{
 "access_token":"eyJhbGciOiJIUzI1NiJ9.eyJpc3MiOiJhcGlndy1zZXJ2aWNlcy1hcHAiLCJzdWIi
OiI4IiwiZXhwIjoxNjYyNTUyMzI3LCJpYXQiOjE2NjI0NjU5MjcsInVzZXJuYW1lIjoic29tZS11c2VybmFtZ
SJ9.Cx_hGU9noyWS6mtK6gjsA85FTgJRQgyJizR5t_akNps",
 "token_type":"Bearer",
 "expires_in":86400
}

The access token can be used as HTTP Authorization request header29 with type Bearer. A cURL example using the
access token retrieved above would appear as:

curl --header 'Authorization: Bearer
eyJhbGciOiJIUzI1NiJ9.eyJpc3MiOiJhcGlndy1zZXJ2aWNlcy1hcHAiLCJzdWIiOiI4IiwiZXhwIjoxNjYy
NTUyMzI3LCJpYXQiOjE2NjI0NjU5MjcsInVzZXJuYW1lIjoic29tZS11c2VybmFtZSJ9.Cx_hGU9noyWS6mtK
6gjsA85FTgJRQgyJizR5t_akNps'

The password for an account can be updated with the change_password API endpoint, passing in both the old and
new passwords, such as in this example:

curl -k --location --request POST '<hostname>/v2/management/accounts/3/
change_password \
 --header 'Content-Type: application/json' \
 --header 'Accept: application/json' \
 --header 'Authorization: Bearer
eyJhbGciOiJIUzI1NiJ9.eyJpc3MiOiJhcGlndy1zZXJ2aWNlcy1hcHAiLCJzdWIiOiI4IiwiZXhwIjoxNjYy
NTUyMzI3LCJpYXQiOjE2NjI0NjU5MjcsInVzZXJuYW1lIjoic29tZS11c2VybmFtZSJ9.Cx_hGU9noyWS6mtK
6gjsA85FTgJRQgyJizR5t_akNps' \
 --data-raw '{
 "old_password": "some-password",
 "new_password": "new-password"
}'

Following security best practices, the password is not stored on DCT and cannot be retrieved. If the password has
been lost, an account with admin privilege can reset the password for a particular account. It is recommended to
change the password reset by an admin account on the first login, or with the change_password API, as described
above.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Authorization
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Authorization

Data Control Tower – Data Control Tower Home

Deployment – 51

•
•

•
•
•
•
•
•

curl -k --location --request POST '<hostname>/v2/management/accounts/2/
password_reset' \
 --header 'Content-Type: application/json' \
 --header 'Accept: application/json' \
 --header 'Authorization: Bearer
eyJhbGciOiJIUzI1NiJ9.eyJpc3MiOiJhcGlndy1zZXJ2aWNlcy1hcHAiLCJzdWIiOiI4IiwiZXhwIjoxNjYy
NTUyMzI3LCJpYXQiOjE2NjI0NjU5MjcsInVzZXJuYW1lIjoic29tZS11c2VybmFtZSJ9.Cx_hGU9noyWS6mtK
6gjsA85FTgJRQgyJizR5t_akNps' \
 --data-raw '{
 "new_password": "new-password"
}'

In the above example, the admin is resetting the password of an account with id 2 to “new-password”.

5.2.2.1 Password policies
The password policy feature allows users to enable and customize the password policy enforced for local
username/password authentication (does not apply to LDAP/Active Directory or SAML/SSO based authentication).

5.2.2.2 Understanding password policies
The password policy is a set of requirements that local passwords must satisfy.

min_length: A password must be longer than this length.
reuse_disallow_limit: The user should not reuse old passwords. This tells the number of last used
passwords disallowed to be reused as the new passwords.
uppercase_letter: A password must have at least one capital letter.
lowercase_letter: A password must have at least one lower case letter.
digit: A password must have at least one digit.
special_character: A password must have at least one special character, such as #, $, !
disallow_username_as_password: A password should not be the same as the user name.
maximum_password_attempts: The number of allowed attempts for incorrect password, after which the
account gets locked.

5.2.2.3 Default password policy
By default, DCT does not enforce any password policy.

5.2.2.4 Changing the password policy
To change the current password policy, call the password policy API endpoint, as shown in the example below:

curl --location --request PATCH 'https://<hostname>/v2/management/accounts/password-
policies' \
--header 'Content-Type: application/json' \
--header 'Accept: application/json' \
--header 'Authorization: apk <your API key>' \
--data-raw '{
 "enabled": true,

Data Control Tower – Data Control Tower Home

Deployment – 52

 "maximum_password_attempts": 2,
 "min_length": 5,
 "reuse_disallow_limit": 3,
 "digit": true,
 "uppercase_letter": true,
 "lowercase_letter": true,
 "special_character": true,
 "disallow_username_as_password": true
}'

Changing the password policy does not affect existing passwords.

5.2.2.5 Disabling local username/password authentication
Username/password authentication (with passwords locally in DCT) can be disabled for individual accounts by not
setting or unsetting their password property, or across the DCT instance using the global properties API. Disable
username/password authentication to force authentication to use an alternate authentication method (LDAP/
Active Directory, SAML/SSO, etc.) as shown in this example:

curl --location --request PATCH 'https://<hostname>/v2/management/properties' \
--header 'Content-Type: application/json' \
--header 'Accept: application/json' \
--header 'Authorization: apk <your API key>' \
--data-raw '{"disable_username_password": true}'

5.2.3 LDAP/Active Directory

5.2.3.1 Configuration
LDAP/Active directory can be used to authenticate login requests, and optionally to retrieve additional information
about accounts, thereafter referred to as LDAP Search.

Configuring authentication

The following attributes must be set to configure LDAP/Active Directory authentication.

Property Name Description

enabled Whether the LDAP/Active Directory feature is enabled.

Data Control Tower – Data Control Tower Home

30 mailto:john@mycompany.co

Deployment – 53

Property Name Description

auto_create_users Whether DCT must automatically create account
records for successful authentication attempts using a
username which does not match any accounts.

If this is disabled, an administrator must create a DCT
account with an ldap_principal attribute matching the
value from the LDAP/Active Directory server prior to
the first login attempt.

If this is enabled, any user with valid credentials in the
LDAP/Active Directory server can authenticate to DCT,
by default with an empty authorization set (i.e not
being able to view any data or perform any action).

hostname The host name or IP address of the LDAP/Active
Directory server.

port Port of the LDAP/Active Directory server. This is
usually 389 for non SSL, and 636 for SSL.

enable_ssl Whether the connection to the LDAP/Active Directory
server must be performed over SSL. It is highly advised
to use SSL. Without SSL, communication between DCT
and the LDAP/Active server can be intercepted.

insecure_ssl, unsafe_ssl_hostname_check,
trustore_file_name, truststore_password

The SSL protocol requires the LDAP/Active Directory
server to expose a certificate signed by a Certificate
Authority (CA) trusted by the JDK which is running
DCT. Refer to the dedicated section below to see how
to configure an Active Directory/LDAP server of which
certificate is not recognized.

[domains].msad_domain_name Microsoft Active Directory only: The DNS name of a
domain in the same forest as the accounts which
login. DCT will append the msad_domain_name to the
username provided at login to form a user principal
name (UPN).

Example: if the msad_domain_name is http://
mycompany.co and a user logs in with username john,
DCT will perform an LDAP request to the Active
Directory server to authenticate
john@mycompany.co30.

mailto:john@mycompany.co
http://mycompany.co
mailto:john@mycompany.co

Data Control Tower – Data Control Tower Home

Deployment – 54

Property Name Description

[domains].username_pattern If the LDAP server is not Microsoft Active Directory, the
username_pattern is used to create a DN string for
user authentication. The pattern argument {0} is
replaced with the username at runtime.

Example: If the username_pattern is
uid={0},ou=People and a user logs in with username
john, DCT will perform an LDAP request with DN
uid=john,ou=People.

The LDAP/Active Directory Integration can be configured both via DCT UI and API. The below image shows an
example of how the configuration can be set in the UI as a way to Authenticate users, auto create new users, as well
as map group attributes for authorization within the DCT Access Control system.

Data Control Tower – Data Control Tower Home

31 http://activedirectory.company.co
32 http://us.company.co

Deployment – 55

The following example requests enable LDAP authentication over SSL with an Active Directory server at address
activedirectory.company.co31 using the us.company.co32 domain:

http://activedirectory.company.co
http://us.company.co
http://activedirectory.company.co
http://us.company.co

Data Control Tower – Data Control Tower Home

Deployment – 56

curl --location --request PUT 'https://<hostname>/v2/management/ldap-config' \
--header 'Content-Type: application/json' \
--header 'Accept: application/json' \
--header 'Authorization: apk <your API key>' \
--data-raw '{
 "enabled": true,
 "auto_create_users": true,
 "hostname": "activedirectory.company.co",
 "enable_ssl": true,
 "port": 636,
 "domains":[{
 "msad_domain_name":"us.company.co"
 }]
}'

Validating the configuration

Updating the LDAP/Active Directory configuration does not guarantee that the provided values are correct, as
validating those requires a user to authenticate to DCT. This can be achieved with the ldap-config/validate API
endpoints, using the credentials valid for the LDAP/Active Directory server. When provided with a username/
password combination, the ldap-config/validate API endpoint will authenticate with the LDAP server. If the
response status code is 200, the configuration is correct. Otherwise, the response code will be 400, and the
response body will provide information to resolve the configuration problems. For example:

curl --location --request POST 'https://<hostname>/v2/management/ldap-config/
validate' \
--header 'Content-Type: application/json' \
--header 'Accept: application/json' \
--header 'Authorization: apk <your API key>' \
--data-raw '{
 "username": "<ldap-username>",
 "password": "<ldap-password>"
}'

Login

One the configuration has been updated, accounts can login (via the UI or API) using the same UI form/API endpoint
they would be using for the local username/password authentication feature. For example:

curl -k --location --request POST 'https://<hostname>/v2/login' \
--header 'Content-Type: application/json' \

Because of a defect in version 3.0.0 of DCT, the above request might fail with a response similar to:

search failed for john.doe with search base null' ,search attribute

'null'

This indicates that authentication works, and search (see below) is not configured.

Data Control Tower – Data Control Tower Home

Deployment – 57

•

--header 'Accept: application/json' \
--data-raw '{
 "username": "<ldap-username>",
 "password": "<ldap-password>"
}'

When LDAP/Active directory is enabled, DCT first attempts to validate passwords with the LDAP/Active Directory
server, and falls back to local password authentication in case of failure. Enabling LDAP/Active directory is thus a
non disruptive operation for existing accounts.

In order to force a transition to LDAP/Active Directory only password authentication, the DCT administrator must
either update the account records to remove the password, or disable local password authentication entirely.

5.2.4 SAML/SSO
The SAML 2.0 protocol allows DCT to delegate authentication to a SAML 2.0 compatible Identity Provider (Active
directory federation services, Azure active directory, Ping federate, Okta, OneLogin, etc.). It only applies to web
browser based interaction, and cannot be used for API access (scripting, integration).

Setting up SAML/SSO requires configuration changes both in the Identity Provider and DCT, so that trust can be
established across both products.

When using SAML/SSO, DCT will uniquely identify accounts by email address, so make sure that records at the
identity provider are configured with a unique email address.

DCT supports automatic account creation (or just in time account provisioning) when using SAML/SSO. When
automatic account creation is enabled, accounts are created automatically when users login for the first time.

DCT allows group membership to be retrieved from the Identity Provider, which can be used to control access
control authorization within DCT via DCT Access Groups. Using Identity Provider group membership allows DCT
authorization to be managed per account group, and guarantees that authorizations in DCT reflect the organization
structure which is expressed by group membership of the identity provider.

SAML/SSO is not mutually exclusive with other authentication methods, so enabling SAML/SSO is not disruptive
(accounts configured with local password or LDAP/Active Directory authentication can still authenticate). In order
to switch to SAML/SSO exclusively as authentication method for web browser interaction, perform the SAML/SSO
configuration steps below and disable LDAP/Active Directory and Username/Password authentication. Note that
API Key based authentication cannot be entirely disabled, but only administrators can create accounts with API
keys.

5.2.4.1 Identity provider setup
Require that an administrator of the Identity provider used by your organization sets up a SAML 2.0 integration with
DCT (an integration is sometimes called a Relying party trust, or an application).

The exact instructions are product specific, but the following input values must be provided:

Name Alternative name depending
on product

Value

Data Control Tower – Data Control Tower Home

Deployment – 58

•

•
•
•
•
•
•

•
•

•

Single Sign-on URL SAML Assertion Consumer
Service
ACS
Recipient URL
Destination URL
Relying party SAML 2.0 SSO
Service URL
Reply URL

https://<dct-hostname>/v2/saml/
SSO

Audience URI SP Entity ID
Relying Party trust identifier

Any value can be selected, as long
as the same value is set in the
Identify Provider configuration and
DCT configuration. We
recommend:

https://<dct-hostname>

Binding POST

Protocol SAML 2.0 WebSSO protocol

The identity provider must be configured to include the email address as NameId attribute, and DCT will use the
email attribute as a unique identifier for users when connecting via SAML/SSO.

5.2.4.2 DCT SAML/SSO setup
Once the configuration has been performed at the Identity provider, use the saml-config API endpoint to configure
DCT accordingly. If DCT has network access to the Identity Provider server, and the Identity Provider provides a
“metadata URL”, you can point DCT directly to the metadata URL. Otherwise, for instance when a firewall blocks
network access from DCT to the Identity Provider, copy the metadata from the Identity Provider using a web
browser and provide it directly to DCT.

The Identity provider (IDP) metadata is a standardized XML document providing the SAML Service Provider (DCT)
with the necessary information to verify the validity of incoming login requests and initiate a SAML/SSO login flow.

The metadata URL is sometimes called “App Federation Metadata URL”, and is sometimes only known by reading
the Identity Provider’s product documentation (for instance Active Directory Federation Services, or ADFS,
publishes the metadata URL at https://<hostname>/federationmetadata/2007-06/federationmetadata.xml).

If auto_create_users is enabled, DCT will create accounts automatically when they login with SAML/SSO for
the first time. If this is disabled, an administrator must create a DCT account with an email attribute matching the
value from the SAML/SSO Identity provider before they can login. When auto_create_users is enabled, any user
configured to authenticate via the Identity provider can authenticate to DCT, by default with an empty
authorization set (i.e not being able to view any data or perform any action).

Example 1: With network access, point DCT to the metadata URL.

curl --location --request GET 'https://<hostname>/v2/management/saml-config' \
--header 'Content-Type: application/json' \
--header 'Accept: application/json' \
--header 'Authorization: apk <your API key>' \

Data Control Tower – Data Control Tower Home

33 https://stedolan.github.io/jq/

Deployment – 59

--data-raw '{
 "enabled": true,
 "auto_create_users": true,
 "metadata_url": "<idp-metadata-url>",
}'

Example 2: Without network access, provide the IDP metadata directly.

curl --location --request PUT 'https://<hostname>/v2/management/saml-config' \
--header 'Content-Type: application/json' \
--header 'Accept: application/json' \
--header 'Authorization: apk <your API key>' \
--data-raw '{
 "enabled": true,
 "auto_create_users": true,
 "metadata": "<json-escaped-idp-metata-xml-blob>",
}'

5.2.4.3 Login
The SAML 2.0 protocol defines two login procedures: The Service Provider initiated flow starts by having users point
their web browser to https://<dct-hostname>/v2/saml/login to login, while the Identity provider
initiated flow starts at the Identity provider (details specific to Identity provider vendor). DCT supports both flows.
The SAML/SSO authentication method is not intended for API interaction, and cannot be used with the Swagger UI.

After successful authentication, the web browser is redirected to the UI landing page and the the navigation bar can
be used to go to the desired page. The session expires 24 hours after login.

5.2.4.4 Troubleshooting
There was an issue in SAML authentication: The assertion cannot be used before <timestamp>

The above error message, which is accompanied by com.coveo.saml.SamlException: The assertion cannot be
used before <timestamp> error in the application logs, indicates that DCT was not able to validate the timestamp of
the authentication provided by the Identity Provider. This is usually due to the system clock of the machine running
DCT being incorrectly configured. Consider using NTP to maintain the machine’s clock up to date.

There was an error fetching data

The above error message indicates that the current account does not have permission to view the data displayed on
the page. Remember that, while DCT creates accounts automatically upon login when auto_create_users is
enabled, by default accounts are created without any authorization and thus cannot see any data. Review the
section below to see how SAML/SSO group membership can be assigned automatically at account creation.

The IDP metadata must be JSON escaped. On a terminal with ./jq33 installed, this can be achieved with
the following command: jq --slurp --raw-input <<< 'xml-metadata-here'

https://stedolan.github.io/jq/
https://stedolan.github.io/jq/

Data Control Tower – Data Control Tower Home

Deployment – 60

5.3 Configure LDAP/Active Directory groups
In addition to being an authentication method, the LDAP/Active Directory integration can optionally also be used to
retrieve additional attributes about the accounts authenticating: first name, last name, email address and group
membership.

DCT only supports retrieving groups which are exposed as an attribute of the LDAP/Active Directory user record.
DCT can not fetch groups membership from group records at the LDAP/Active Directory, and thus also does not
support nested groups.

Group memberships are retrieved at authentication time, using the account credentials. DCT does not need
credentials of an LDAP/Active Directory administrator, but will only be able to retrieve group memberships if LDAP/
Active Directory users have the right to read the corresponding attribute.

This can be enabled by setting additional arguments to the domain API object.

search_base The Context name in which to search. Being specific
enables faster LDAP search.

To construct the search_base DN string according to
your LDAP/Active Directory server, using an LDAP
browser, navigate to a user, and then construct the
search_base DN in reverse order from the User, up the
folder hierarchy. For example:

If a User DN is:

CN=some-user-id,CN=Users,DC=mycompany,DC=co

The corresponding search base might be:

CN=Users,DC=mycompany,DC=co

email_attr Name of the attribute in the LDAP/Active Directory
server containing email addresses.

Example: mail

last_name_attr Name of the attribute in the LDAP/Active Directory
server containing last names

Example: sn

first_name_attr Name of the attribute in the LDAP/Active Directory
server containing first names

Example: givenName

group_attr Name of the attribute in the LDAP/Active Directory
server containing group(s) membership. This can be a
multi-valued attribute.

Example: memberOf

Data Control Tower – Data Control Tower Home

34 http://activedirectory.company.co
35 http://us.company.co

Deployment – 61

search_attr Name of the attribute in the LDAP/Active Directory
server of which value corresponds to the username
provided to the DCT login requests.

For Active Directory, this is usually sAMAccountName.

Example: If the search base is
CN=Users,DC=mycompany,DC=co and the
search_attr is principalName, DCT will search for a
record with a principalName matching the username
provided to the login request under the
CN=Users,DC=mycompany,DC=co sub tree.

object_class_attr Restricts search to records with an objectClass
matching this value.

Example: person

5.3.1 Active Directory example
The following requests enable LDAP authentication over SSL with an Active Directory server at address
activedirectory.company.co34, using the us.company.co35 domain, and configures optional attributes to retrieve
first name, last name, email address, and group membership from the users sub-tree.

curl --location --request PUT 'https://<hostname>/v2/management/ldap-config' \
--header 'Content-Type: application/json' \
--header 'Accept: application/json' \
--header 'Authorization: apk <your API key>' \
--data-raw '{
 "enabled": true,
 "auto_create_users": true,
 "hostname": "activedirectory.mycompany.co",
 "enable_ssl": true,
 "port": 636,
 "domains":[{
 "msad_domain_name":"mycompany.co",
 "search_base":"CN=Users,DC=mycompany,DC=co",
 "email_attr": "mail",
 "first_name_attr": "givenName",
 "last_name_attr": "sn",
 "group_attr": "memberOf",
 "object_class_attr":"person",
 "search_attr": "sAMAccountName"
 }]
}'

http://activedirectory.company.co
http://us.company.co
http://activedirectory.company.co
http://us.company.co

Data Control Tower – Data Control Tower Home

36 mailto:john@mycompany.co

Deployment – 62

1.

2.

3.
4.

With the above config, when a user logs in with username John, DCT will:

Authenticate with the Active Directory server using the user principal name john@mycompany.co36 and
supplied password.
Search in the CN=Users,DC=mycompany,DC=co sub tree a record with objectClass=person and
sAMAccountName=john.
Create or update a DCT Account record with the attributes extracted from the Active Directory server.
For each group membership found in the memberOf of the Active Directory server, an account tag is
created with key=login_groups and value is the group name. These tags are protected (i.e cannot be
modified within DCT) and can be securely used to control access groups membership.

As explained above, the ldap-config/validate API endpoint can be used to validate that each of the attributes
corresponding to LDAP/Active Directory attributes.

5.3.2 Attributes mapping
As explained above, the only required attribute in the SAML Response (the message sent by the Identity Provider to
DCT during login) is the NameId attribute which must be configured to a unique email address.

In addition to this, DCT allows for first name, last name, and group membership attributes to be included. The first
and last names attributes will be stored as properties of the account object. For each group membership found in
the SAML response attribute, an account tag is created with key=login_groups and value is the group name. These
tags are protected (i.e cannot be modified within DCT) and can be securely used to control access groups
membership.

In other to enable these optional attributes, update the Identity provider configuration to include them in the SAML
response, and use the saml-config API endpoint to configure DCT with the name of the attributes configured in the
Identity provider:

curl --location --request PUT 'https://<hostname>/v2/management/saml-config' \
--header 'Content-Type: application/json' \
--header 'Accept: application/json' \
--header 'Authorization: apk <your API key>' \
--data-raw '{
 "enabled": true,
 "auto_create_users": true,
 "metadata": "<json-escaped-idp-metata-xml-blob>",
 "first_name_attr": "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/
givenname",
 "last_name_attr": "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/surname",
 "group_attr": "http://schemas.xmlsoap.org/claims/Group"
}'

With the above configuration, and a SAML Response as the following produced by the Identity Provider during login:

<?xml version="1.0" encoding="UTF-8"?>
<saml2:Assertion ID="id97923983167603821157180516" IssueInstant="2022-12-01T10:07:12.
856Z" Version="2.0"
 xmlns:saml2="urn:oasis:names:tc:SAML:2.0:assertion">

mailto:john@mycompany.co
mailto:john@mycompany.co

Data Control Tower – Data Control Tower Home

Deployment – 63

 <saml2:Issuer Format="urn:oasis:names:tc:SAML:2.0:nameid-format:entity">http://
www.idp-demo.com/exk1fupjwz1YcMo290h8</saml2:Issuer>
 <saml2:Subject>
 <saml2:NameID Format="urn:oasis:names:tc:SAML:1.1:nameid-format:unspecified">
john.doe@company.co</saml2:NameID>
 <saml2:SubjectConfirmation Method="urn:oasis:names:tc:SAML:2.0:cm:bearer">
 <saml2:SubjectConfirmationData NotOnOrAfter="2022-12-01T10:12:12.857Z"
 Recipient="https://localhost/v2/saml/SSO"/>
 </saml2:SubjectConfirmation>
 </saml2:Subject>
 <saml2:Conditions NotBefore="2022-12-01T10:02:12.857Z" NotOnOrAfter="2022-12-01T1
0:12:12.857Z">
 <saml2:AudienceRestriction>
 <saml2:Audience>https://dct-demo.delphix.com</saml2:Audience>
 </saml2:AudienceRestriction>
 </saml2:Conditions>
 <saml2:AuthnStatement AuthnInstant="2022-12-01T10:05:07.916Z" SessionIndex="id166
9889232855.2084756273">
 <saml2:AuthnContext>
 <saml2:AuthnContextClassRef>urn:oasis:names:tc:SAML:2.0:ac:classes:Passwo
rdProtectedTransport</saml2:AuthnContextClassRef>
 </saml2:AuthnContext>
 </saml2:AuthnStatement>
 <saml2:AttributeStatement>
 <saml2:Attribute Name="http://schemas.xmlsoap.org/ws/2005/05/identity/claims/
givenname" NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:unspecified">
 <saml2:AttributeValue
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:type="xs:st
ring">John
 </saml2:AttributeValue>
 </saml2:Attribute>
 <saml2:Attribute Name="http://schemas.xmlsoap.org/ws/2005/05/identity/claims/
surname" NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:unspecified">
 <saml2:AttributeValue
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:type="xs:st
ring">Doe
 </saml2:AttributeValue>
 </saml2:Attribute>
 <saml2:Attribute Name="http://schemas.xmlsoap.org/claims/Group" NameFormat="u
rn:oasis:names:tc:SAML:2.0:attrname-format:unspecified">
 <saml2:AttributeValue
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:type="xs:st
ring">Dev-Team
 </saml2:AttributeValue>
 <saml2:AttributeValue
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:type="xs:st
ring">QA
 </saml2:AttributeValue>
 </saml2:AttributeStatement>

Data Control Tower – Data Control Tower Home

Deployment – 64

•

•

</saml2:Assertion>

Would automatically create or update a DCT account with the following properties:

{
 "id": 94,
 "username": "john.doe@company.co",
 "firstName": "John",
 "lastName": "Doe",
 "email": "john.doe@company.co",
 "tags": [
 {
 "key": "login_groups",
 "value": "Dev-Team"
 },
 {
 "key": "login_groups",
 "value": "QA"
 }
]
 }

5.4 Replace HTTPS certificate for DCT
By default, to enable HTTPS, DCT creates a unique self-signed certificate when starting up for the first time. This
certificate and private key are configured in the values.yaml file under:

proxy:
 crt:<certificate_value>
 key:<key_value>

To use your own certificates, these default values need to be replaced. They are Base64 encoded values of the
certificate and key, respectively.

To generate the Base64 encoded value of the certificate:
cat mycertfile.pem | base64 -w 0

To generate the Base64 encoded value of the key:
cat mykey.key | base64 -w 0

Generating a new TLS certificate and key could require the assistance of your Security or IT departments. A new key
pair (public and private key) will need to be created, in addition to a certificate signing request (CSR) for that key
pair. Your IT department should be able to determine the correct certificate authority (CA) to sign the CSR and
produce the new certificate. The common name of the certificate should match the fully qualified domain name
(FQDN) of the host, as well as the FQDN as a Subject Alternative Name (SAN).

Data Control Tower – Data Control Tower Home

37 https://openresty.org/en
38 https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Authorization
39 https://portal.document360.io/#replace-https-certificate-for-apigw

Authentication – 65

6 Authentication

6.1 Introduction
DCT uses Nginx /OpenResty37as an HTTP server and a reverse proxy for the application. Using the default
configuration, all connections to DCT are over HTTPS and require the user to authenticate. There are two supported
methods for authentication; API keys and OpenID Connect. The Nginx/OpenResty configuration files can be edited
via /etc/config bind mounts for the proxy container to customize the HTTP server and change options such as
TLS versions.

6.2 API Keys
API keys are the default method to authenticate with DCT. This is done by including the key in the HTTP
Authorization request header38with type apk. A cURL example using an example key of
1.0p9PMkZO4Hgy0ezwjhX0Fi4lEKrD4pflejgqjd0pfKtywlSWR9G0fIaWajuKcBT3 would appear as:

curl --header 'Authorization: apk
1.0p9PMkZO4Hgy0ezwjhX0Fi4lEKrD4pflejgqjd0pfKtywlSWR9G0fIaWajuKcBT3'

cURL (like web browsers and other HTTP clients) will not connect to DCT over HTTPS unless a valid TLS certificate
has been configured for the Nginx server. If you haven't performed this configuration step39 yet, and understand the
risk, you may disable the check in the HTTP client. For instance this can done with cURL using the --insecure flag.

6.2.1 Bootstrap First API Key
There is a special process to bootstrap the creation of the first API key. This first API key should only be used to
create another key and then promptly deleted, since the bootstrap API will appear in the logs. T his process can be
repeated as many times as needed, for example, in a case where existing API keys are lost or have been deleted. It
also means that the Linux users with permissions to edit the docker-compose file implicitly have the ability to get
an API key at any time. There is no mechanism to lock this down after the first bootstrap key is created.

Begin by stopping the application with the following command:

sudo docker - compose stop

Once the application is stopped, edit the docker-compose.yaml file and modify the following lines to the DCT
section, to set the API_KEY_CREATE to the string value "true" :

services:
 gateway:
 environment:

https://openresty.org/en
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Authorization
https://portal.document360.io/#replace-https-certificate-for-apigw
https://openresty.org/en
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Authorization
https://portal.document360.io/#replace-https-certificate-for-apigw

Data Control Tower – Data Control Tower Home

Authentication – 66

 API_KEY_CREATE: "true"

Start DCT again with sudo docker-compose up . You will see the following output in the logs for the app
container (the key will be different from this example):

NEWLY GENERATED API KEY: 1.0p9PMkZO4Hgy0ezwjhX0Fi4lEKrD4pflejgqjd0pfKtywlSWR9G0fIaWaj
uKcBT3

Copy the API Key and shut down the DCT app. The API key can now be used to authenticate with DCT. Remember
that the API Key value must be prefixed with apk. An example cURL command with the above API Key appears as
follows:

curl --header 'Authorization: apk
1.0p9PMkZO4Hgy0ezwjhX0Fi4lEKrD4pflejgqjd0pfKtywlSWR9G0fIaWajuKcBT3'

Edit the docker-compose.yaml file to set the API_KEY_CREATE environment variable value back to "false" and
restart DCT again with sudo docker-compose up -d .

6.2.2 Create and manage API Keys
The initial API key created should be used to create a new admin secure key. This is done by creating a new Api
Client entity and setting the generate_api_key. The " name" attribute should be the desired name to uniquely
identify the user of this key.

curl --location --request POST 'https://<hostname>/v2/management/api-clients' \
--header 'Content-Type: application/json' \
--header 'Accept: application/json' \
--header 'Authorization: apk
1.0p9PMkZO4Hgy0ezwjhX0Fi4lEKrD4pflejgqjd0pfKtywlSWR9G0fIaWajuKcBT3' \
--data-raw '{
 "name": "secure-key",
 "generate_api_key": true
}'

A response should be received similar to the lines below:

{
 "api_key_id": 5,
 "token": "5.vCfC0MnpySYZLshuxap2aZ7xqBKAnQvV7hFnobe7xuNlHS9AF2NQnV9XXw4UyET6"
}

Now that the new and secure API key is created, the old one must be deleted for security reasons since the key
appeared in the logs. To do this make the following request:

Data Control Tower – Data Control Tower Home

40 https://openid.net/specs/openid-connect-discovery-1_0.html
41 https://portal.document360.io/dct-2-0-0/docs/dct-2-0-0-0-custom-configuration#bind-mounts

Authentication – 67

curl --location --request DELETE 'https://<hostname>/v2/management/api-clients/<id>'
 \
--header 'Content-Type: application/json' \
--header 'Accept: application/json' \
--header 'Authorization: apk
5.vCfC0MnpySYZLshuxap2aZ7xqBKAnQvV7hFnobe7xuNlHS9AF2NQnV9XXw4UyET6'

The id referenced above is the numeric id of the API client. It is the integer before the period in the token. For
example, the id of 1.0p9PMkZO4Hgy0ezwjhX0Fi4lEKrD4pflejgqjd0pfKtywlSWR9G0fIaWajuKcBT3 is 1.

Finally, to list all of the current API clients, make the following request:

curl --location --request GET 'https://<hostname>/v2/management/api-clients/' \
--header 'Content-Type: application/json' \
--header 'Accept: application/json' \
--header 'Authorization: apk <your API key>'

6.3 OAuth 2.0

6.3.1 Enable OpenID connect
DCT supports OAuth2 authentication via the OpenID Connect Discovery40 specification. To add support for OAuth
2.0, first configure Nginx to communicate with your OAuth2 server: a bind mount41 must be used . The file needs to
be named default.conf and appear at config/nginx/conf.d/default.conf related to the root of the
bind mounted directory. See the bind mount section about how to use docker cp to begin with the default version
of the file.

There are three important sections of the file that need to be updated. First, the open_id_connect_enabled
variable must be set to true and API keys need to be disabled like so:

local api_keys_enabled = false
local open_id_connect_enabled = true

The other two important configuration options are the discovery URL of the OAuth2 server and the specific attribute
names of the JWT, to provide a unique ID and name for the user.

-- OpenID Connect implementation
if open_id_connect_enabled then
 local opts = {
 -- Replace the discovery URL with the discovery endpoint of your own OAuth2
server.
 discovery = "https://delphix.okta.com/oauth2/default/.well-known/oauth-
authorization-server",

https://openid.net/specs/openid-connect-discovery-1_0.html
https://portal.document360.io/dct-2-0-0/docs/dct-2-0-0-0-custom-configuration#bind-mounts
https://openid.net/specs/openid-connect-discovery-1_0.html
https://portal.document360.io/dct-2-0-0/docs/dct-2-0-0-0-custom-configuration#bind-mounts

Data Control Tower – Data Control Tower Home

Authentication – 68

 ssl_verify = "yes",
 accept_unsupported_alg = false,
 accept_none_alg = false,
 redirect_uri = "",
 }

 local jwt, err, token = require("resty.openidc").bearer_jwt_verify(opts)
 if err then
 ngx.header["X-jwt-error"] = err
 ngx.status = 401
 ngx.log(ngx.ERR, "Invalid token: " .. err)
 ngx.exit(ngx.HTTP_UNAUTHORIZED)
 return
 end

 -- Replace "sub" with the attribute which is meant to be used
 -- as client_id or client_name in the JWT.
 ngx.var.client_id = jwt.sub
 ngx.var.client_name = jwt.sub

end

Once requests are authenticated, they must be matched with an existing API client in DCT. To do so, one of the
claims of the JWT (Json Web Token) must correspond to the client_id of an API client. For instance, imagine
someone is using a JWT with a sub claim with value abc123 and the configuration above, which extracts the sub
claim out of the JWT and sets it as client_id . We can create a corresponding admin API client with the following
request:

curl -k --location --request POST 'https://<hostname>/v2/management/api-clients' \
--header 'Content-Type: application/json' \
--header 'Accept: application/json' \
--header 'Authorization: apk
1.0p9PMkZO4Hgy0ezwjhX0Fi4lEKrD4pflejgqjd0pfKtywlSWR9G0fIaWajuKcBT3' \
--data-raw '{
 "name": "oauth2-test-api-client",
 "api_client_id": "abc123",
 "generate_api_key": false
}'

Set the name to a logical name corresponding to the application or person using the JWT. is_admin denotes
whether this API client has admin access to DCT. api_client_id must be set to the exact string value found in the JWT
claim extracted in the Nginx config above. generate_api_key is disabled in this example as the API client will use
exclusively OAuth2 (JWT) to authenticate and not API keys.

Data Control Tower – Data Control Tower Home

42 https://portal.document360.io/dct-2-0-0/docs/dct-2-0-0-0-custom-configuration#bind-mounts
43 https://docs.docker.com/engine/reference/commandline/cp

Authentication – 69

6.4 Replace HTTPS Certificate for APIGW
By default to enable HTTPS, DCT creates a unique self-signed certificate when starting up for the first time. To
replace this certificate and private key, use a bind mount42. The configuration needs to be bind mounted to a /
etc/config/nginx/ssl directory inside the container. The default location for the configuration is /etc/

config/nginx/ssl/ssl.conf and therefore should be placed in nginx/ssl/ssl.conf - inside the

configuration directory on the host. The default configuration can be retrieved by using docker cp43to copy /etc/
config/nginx/ssl/ssl.conf out of the proxy container and used as a starting point.

To replace the certificate and corresponding private key used by Nginx, place the updated certificate at nginx/

ssl/nginx.crt and the private key at nginx/ssl/nginx.key inside the bind mounted directory on the
host. Doing this could require the assistance of someone from your security or IT departments. A new key pair
(public and private key) will need to be created, in addition to a certificate signing request (CSR) for that key pair. IT
should be able to determine the correct certificate authority (CA) to sign this CSR and produce the new certificate.
The common name of the certificate should match the fully qualified-domain name (FQDN) of the host as well
include the FQDN as a Subject Alternative Name (SAN). The supported versions of TLS can be changed by altering
the ssl_protocols line and the list of ciphers by altering the ssl_ciphers line. After this is done, restart DCT
application with docker-compose.

https://portal.document360.io/dct-2-0-0/docs/dct-2-0-0-0-custom-configuration#bind-mounts
https://docs.docker.com/engine/reference/commandline/cp
https://portal.document360.io/dct-2-0-0/docs/dct-2-0-0-0-custom-configuration#bind-mounts
https://docs.docker.com/engine/reference/commandline/cp

Data Control Tower – Data Control Tower Home

44 https://ecosystem.delphix.com/

Integrations – 70

7 Integrations
Data Control Tower provides a global integration layer for a connected Delphix ecosystem, whether that is a single
or dozens of globally distributed engines, DCT drive a scalable approach to integrating Delphix into any custom
script or automation toolchain.

Aside from the comprehensive API layer (see API references(see page 40) for more detail), DCT powers automation
through Delphix-built and supported integrations with popular applications such as Terraform, ServiceNow, etc.

To see a current list of Delphix integrations, please visit Delphix Ecosystem Hub44 for more detail.

https://ecosystem.delphix.com/
https://ecosystem.delphix.com/

	What is Data Control Tower (DCT)?
	New features
	Overview
	New in DCT 2.2
	Deployment
	APIs
	UI

	DCT Features
	Supported APIs

	DCT concepts
	Introduction
	Concepts
	Virtual Database (VDB) groups
	Comparing Self-Service containers to VDB groups
	DCT Bookmarks
	DCT Jobs
	Tags
	Tag-based filtering

	Nuances
	Stateful APIs
	Local data availability
	Engine-to-DCT API mapping
	Local references to global UUIDs
	Environment representations
	Supported data sources/configurations
	Process feedback
	API metering instructions

	Docker Compose
	Installation and setup for Docker Compose
	Custom configuration
	Docker logs
	Migration topics
	Admin topics for Docker Compose

	Kubernetes
	Installation and setup for Kubernetes
	DCT logs for Kubernetes
	Admin topics for Kubernetes

	OpenShift
	Installation and setup for OpenShift
	OpenShift authentication
	DCT logs for OpenShift
	Admin topics for OpenShift

	Developer resources
	API requests and reporting
	API references

	Supported versions
	Deployment
	Engines: connecting/authenticating
	Introduction
	Truststore for HTTPS
	Authentication with engine
	HashiCorp vault
	TLS certificates

	Accounts: connecting/authenticating
	API keys
	Username/password
	LDAP/Active Directory
	SAML/SSO

	Configure LDAP/Active Directory groups
	Active Directory example
	Attributes mapping

	Replace HTTPS certificate for DCT

	Authentication
	Introduction
	API Keys
	Bootstrap First API Key
	Create and manage API Keys

	OAuth 2.0
	Enable OpenID connect

	Replace HTTPS Certificate for APIGW

	Integrations

