
Data Control Tower Home
Data Control Tower

Exported on 08/15/2023

Data Control Tower – Data Control Tower Home

 – 2

Table of Contents

1 What is Data Control Tower (DCT)? ..4

2 DCT concepts ..5
2.1 Introduction ..5

2.2 Concepts..5
2.2.1 Virtual Database (VDB) groups ... 5

2.2.2 Comparing Self-Service containers to VDB groups ... 6

2.2.3 Bookmarks .. 6

2.2.4 Jobs ... 6

2.2.5 Tags.. 7

2.2.6 Tag-based filtering .. 7

2.3 Nuances ...8
2.3.1 Stateful APIs .. 8

2.3.2 Local data availability... 8

2.3.3 Engine-to-DCT API mapping ... 8

2.3.4 Local references to global UUIDs ... 8

2.3.5 Environment representations .. 8

2.3.6 Supported data sources/configurations.. 9

2.3.7 Process feedback .. 9

3 Supported versions...10

4 Installation and setup...11
4.1 Hardware requirements ...11

4.2 Installation requirements (Docker Compose) ...11
4.2.1 Running Docker as non-root (optional) ... 12

4.3 Unpack and install DCT...12

4.4 Run DCT ...12

5 Custom configuration ...14
5.1 Introduction ..14

5.2 Bind mounts ..14

6 Authentication ..16
6.1 Introduction ..16

Data Control Tower – Data Control Tower Home

 – 3

6.2 API Keys ...16
6.2.1 Bootstrap First API Key ... 16

6.2.2 Create and manage API Keys.. 17

6.3 OAuth 2.0 ...18
6.3.1 Enable OpenID connect .. 18

6.4 Replace HTTPS Certificate for APIGW ..20

7 Engines: connecting/authenticating..21
7.1 Introduction ..21

7.2 Truststore for HTTPS ..21

7.3 Authentication with engine ..21

7.4 HashiCorp vault...21
7.4.1 Vault authentication and registration.. 22

7.4.2 Token ... 22

7.4.3 AppRole ... 23

7.5 TLS certificates..23
7.5.1 Retrieving engine credentials... 23

8 Backup DCT ...25

9 DCT Logs ..26

10 Developer resources ...27
10.1 API requests and reporting...27
10.1.1 Introduction .. 27

10.1.2 Engines .. 27

10.2 API references..28

Data Control Tower – Data Control Tower Home

What is Data Control Tower (DCT)? – 4

1 What is Data Control Tower (DCT)?
Today’s application and data landscape is an increasingly complex ecosystem of hosting architectures, often
represented by a multi-cloud landscape coupled with an explosion of different platforms and services. This
fragmented picture of heterogeneous silos makes data governance, automation, and compliance a herculean, if
not, an impossible task.

Data Control Tower (DCT) is an enabling Delphix platform that introduces a data mesh to unify data governance,
automation, and compliance across all applications and cloud platforms.

Data governance is achieved through operational control and visibility of test data across multicloud applications,
databases, environments, and releases. DCT brings data cataloging, tagging, and data access controls for central
governance of all enterprise data, while providing the right data at the right time to development teams.

Data automation at CI/CD speed and enterprise scale is easier and more powerful, by combining DCT with
Continuous Data. A unified API gateway, self-service automation tools, and plug-and-play DevOps integrations
streamline the initial configuration and day-to-day workflows.

DCT with Continuous Compliance provides robust data compliance in lower environments, all while reducing
costs and enabling fast, quality software development.

Data Control Tower – Data Control Tower Home

DCT concepts – 5

2 DCT concepts

2.1 Introduction
Data Control Tower (DCT) provides new and novel approaches to general Delphix workflows, delivering a more
streamlined developer experience. This article will introduce these concepts to Delphix and how they work with
DCT.

2.2 Concepts

2.2.1 Virtual Database (VDB) groups
Virtual Database (VDB) groups are a new concept to Delphix, which enable the association of one or more VDBs as a
single VDB group. This allows for bulk operations to be performed on the grouped VDBs, such as bookmark,
provision, refresh, rewind, and others. This will assist in complex application testing scenarios (e.g. integration and
functional testing) that require multiple data sources to properly complete testing.

With VDB groups, developers can now maintain data synchronicity between all grouped VDBs, which is particularly
useful for complex timeflow operations. For example, updating VDBs to reflect a series of schema changes across
data sources, or to reflect an interesting event in all grouped datasets. In order to maintain synchronicity among
grouped datasets, timeflow operations (refresh, rewind, etc.) must use a bookmark reference.

In the above example, a VDB Group reference is created for three VDBs. At the end of the above timeline group, a
developer decides to rollback those VDBs to a previous snapshot. By issuing a single command via the VDB groups
endpoint, DCT will move all three back, ensuring that they all maintain referential synchronicity.

Bookmarks and VDB groups are loosely related; a VDB group can exist in the absence of any bookmarks, and a
bookmark can exist without any VDB group. It is important to note that the bookmark represents data, while the
VDB group represents the databases to make this data available.

Data Control Tower – Data Control Tower Home

DCT concepts – 6

•
•
•
•

•
•
•

2.2.2 Comparing Self-Service containers to VDB groups
As mentioned above, VDB groups are a crucial DCT concept that enable Self-Service functionality outside of the
Self-Service application. Consider VDB groups acting similarly to Self-Service containers, in that it provides
grouping and synchronization among VDBs, but VDB groups can provide a more flexible approach for users. Here
are some additional points for example:

The same VDB can be included in multiple VDB groups
Including a VDB in a VDB group does not prevent operations on the VDB individually
VDBs can be added to or removed from VDB groups
VDB groups do not have their own timeline

2.2.3 Bookmarks
DCT Bookmarks are a new concept that represents a human-readable snapshot reference that is maintained within
DCT. This is not to be confused with Self-Service bookmarks, maintained separately within the Self-Service
application. With DCT Bookmarks, developers can now reference meaningful data (e.g. capturing a schema version
reference to pair with an associated code version, capturing test failure data so that developers can reproduce the
error in a developer environment, etc.) and use those references for any number of use-cases (e.g. versioning data
as code, quickly provisioning a break/fix environment with relevant data, etc.). DCT Bookmarks are compatible with
both VDBs and VDB groups, and can be used as a reference for common timeflow operations such as:

Provisioning a VDB or VDB group from a bookmark
Refreshing a VDB or VDB group to a bookmark
Rewinding a VDB or VDB group to a bookmark

2.2.4 Jobs
Jobs in DCT are the primary means of providing operation feedback (PENDING, STARTED, TIMEDOUT, RUNNING,
CANCELED, FAILED, SUSPENDED, WAITING, COMPLETED, ABANDONED) for top-level operations that are run on DCT.
Top-level operations represent the parent operation that may have one or more child-based jobs (e.g. refreshing a

DCT will automatically stop an operation from executing if one or more objects are incompatible (e.g.
provisioning a VDB group into a set of environments, where one of the VDBs is incompatible, such as an
Oracle on Linux VDB provisioned onto a Windows environment).

VDB groups based operations will return a single job to monitor the overall status of the series of
individual VDB operations. If one of those individual operations is unable to complete, DCT will report a
“fail”, but any individual operations that are able to successfully complete will still do so.

DCT Bookmarks have associated retention policies, the default value is 30 days, but policies can be
customized anywhere from a day to an infinite amount of time. Once the Bookmark expires, DCT will
delete the bookmark.
Bookmarks are compatible with individual VDBs and VDB groups. Bookmark Sharing is only available for
engines on version 6.0.13 and above.
DCT Bookmarks, when created, initiate a snapshot operation on each and every VDB in order to maintain
synchronicity between each VDB. In that same vein, bookmark-based VDB group operations will have each
VDB-specific sub-process run in parallel (as opposed to sequentially) to reduce drift between grouped
VDBs.

Data Control Tower – Data Control Tower Home

DCT concepts – 7

•
•
•
•

•

•

VDB group is the parent job to all of the individual refresh jobs for the grouped VDBs under the VDB group
reference).

2.2.5 Tags
DCT Tags enable a new business metadata layer for users and consumers to filter, sort, and identify common
Delphix objects, to power any number of business-driven workflows. A tag is comprised of a (Key:Value) pair that
associates business-level data (e.g. location, application, owner, etc.) with supported objects. DCT 2.0 and above
support the following Tags:

Continuous Data Engines
Environments
dSources
VDBs

Developers and administrators add and remove tags using tag-specific object endpoints (e.g. /vdbs/{vdbId}/

tags) and can leverage tags as search criteria when using the object-specific search endpoints (e.g. using filtering
language to narrow results).

Some sample tag-based use-cases include:

Refreshing all the VDBs owned by a specific App Team using an “Application: Payment Processing” tag. This
would be accomplished by querying “what VDBs have the (Application: Payment Processing) tag" and
feeding those VDB IDs into the refresh endpoint.
Driving accountability for VDB ownership by tagging primary and secondary owners for each VDB (e.g.
(primary_owner: John Smith), (secondary_owner: Jane Brown)). That way, if a VDB is overdue for a refresh,
tracking down an owner is a simple tag query.

2.2.6 Tag-based filtering
All taggable objects support tag-based filtering for API queries that adhere to the search standards documented in
API References(see page 28). A few examples of how tag-based filtering can be used are as follows:

List all VDBs of type 'Oracle' , of which IP address contains the '10.1.100' string and which have been

tagged with the 'team' tag, 'app-dev-1' .

database_type EQ 'Oracle' AND ip_address CONTAINS '10.1.100' and tags CONTAINS { key
EQ 'team' AND value EQ 'app-dev-1'}

Top-level jobs will report a “FAILED” status if one or more child jobs fail. For child jobs that can complete,
DCT will continue to complete those jobs even if a parent job reports a failure.

Tags are registered as an attribute that is specific to an object as opposed to a central tagging service. As
a result, tag-based querying can only be done on a per-object type basis.

A supported object can contain any number of tags.

Data Control Tower – Data Control Tower Home

DCT concepts – 8

2.3 Nuances

2.3.1 Stateful APIs
All applicable DCT APIs are stateful so that running complex queries against a large Delphix deployment can be
done rapidly and efficiently. DCT accomplishes this by periodically gathering and hosting telemetry-based Delphix
metadata from each engine.

2.3.2 Local data availability
DCT currently relies on existing Continuous Data and Compliance constructs around data-environment-engine
relationships. This means that DCT operations require VDBs to live on the engine where the parent dSource lives
and so on.

2.3.3 Engine-to-DCT API mapping
Wherever possible, DCT has looked to provide an easier-to-consume developer experience. This means that in some
cases, an API on DCT could have an identical API on an engine. However, there are many instances of providing a
higher level abstraction for ease of consumption; one example is the data inventory APIs on DCT (sources,
dSources, VDBs), which are a simplified representation of data represented by the source, sourceconfig, and
repository endpoints on the local engine (source, dSource, and VDB detail are all combined under those three
endpoints).

2.3.4 Local references to global UUIDs
In order to avoid collision of identically-named and referenced objects, DCT generates Universally Unique
IDentifiers (UUID) for all objects. For existing objects on engines like dSources and VDBs, DCT will concatenate the
local engine reference with the engine UUID (e.g. 'Oracle-1' on engine '3cec810a-

ee0f-11ec-8ea0-0242ac120002' will be represented as 'Oracle-1-3cec810a-

ee0f-11ec-8ea0-0242ac120002' on DCT).

2.3.5 Environment representations
Environments within Delphix serve as a reference for the combination of a host and instance. This is coupled with
the fact that environments can be leveraged by multiple engines at the same time and that engines often have a
specific context to some of the elements that comprise an environment. For example, an environment could have
both an Oracle and ASE instance installed and that Engine A leverages an Oracle-based workflow and Engine B
leverages an ASE workflow. DCT will create two identifiers to represent the specific host and instance combinations.
Thus, in DCT, Engine A will be connected to a different uniquely identified Environment than Engine B.

As mentioned earlier with Engine-to-DCT API mapping, DCT aims to simplify the user experience with Delphix APIs
by combining different Continuous Data endpoints into a simplified DCT API. The Environment API does this by
combining environment, repository, and host endpoints so that writing queries against Delphix data is a much
simpler process. One example would be identifying all environments that have a compatible Oracle home for
provisioning:

Data Control Tower – Data Control Tower Home

DCT concepts – 9

repositories CONTAINS { database_type EQ 'Oracle' and allow_provisioning EQ true AND
version CONTAINS '19.2.3'}

2.3.6 Supported data sources/configurations
DCT is compatible with all Delphix-supported data sources and configurations.

2.3.7 Process feedback
Whenever a DCT request completes, it will return a JOB ID as its response. This Job ID can be used in conjunction
with the jobs endpoint to query the operation status.

Data Control Tower – Data Control Tower Home

Supported versions – 10

3 Supported versions
Data Control Tower has minimum engine versions that are actively tested against to ensure optimal
interoperability. Please ensure that all connected engines meet the version requirements:

Delphix Engine Version

Continuous Data 6.0.0.1 or higher

Continuous Compliance 6.0.13.0 or higher

Data Control Tower – Data Control Tower Home

1 https://docs.docker.com/engine/install/#server
2 https://docs.docker.com/engine/install/
3 https://docs.docker.com/compose/install/

Installation and setup – 11

4 Installation and setup

4.1 Hardware requirements
The hardware requirements for Data Control Tower are listed below. In addition to these requirements, inbound
port 443 must be open for API clients, and outbound port 443 to engines.

CPU: 4-Core
Memory: 2GB
Storage: 50GB
Port: 443

4.2 Installation requirements (Docker Compose)
DCT requires Docker and Docker Compose to run, thus, Linux versions and distributions that have been verified to
work with Docker are supported. To see a list of supported distributions, please reference this Docker article1.

This example uses a Docker installation2 and is completed on an Ubuntu 20.04 VM.

To begin, uninstall any old versions of Docker.

sudo apt-get remove docker docker-engine docker.io containerd runc

Next, update the package lists and install Docker.

sudo apt-get update
sudo apt-get install docker.io

Last, install Docker Compose3.

sudo curl -L "https://github.com/docker/compose/releases/download/1.29.1/docker-
compose-$(uname -s)-$(uname -m)" -o /usr/local/bin/docker-compose
sudo chmod +x /usr/local/bin/docker-compose

Docker Compose should only be used to deploy DCT in an evaluation/testing capacity, and production
DCT workloads in Docker Compose are not fully supported. Installations starting on Docker Compose may
be migrated to Kubernetes or OpenShift by using the steps in the technical documentation. In-place
upgrades from Docker Compose to Kubernetes or OpenShift are not supported.

Docker-Compose is packaged with Docker engine version 20.10.15 and up.

https://docs.docker.com/engine/install/#server
https://docs.docker.com/engine/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/engine/install/#server
https://docs.docker.com/engine/install/
https://docs.docker.com/compose/install/

Data Control Tower – Data Control Tower Home

4 https://docs.docker.com/engine/install/linux-postinstall/
5 https://download.delphix.com/folder

Installation and setup – 12

4.2.1 Running Docker as non-root (optional)
To avoid prefacing the Docker command with sudo, create a Unix group called docker and add users to it. When the
Docker daemon starts, it creates a Unix socket accessible by members of the Docker group. See Docker Post
Installation4 documentation for details.

sudo groupadd docker
sudo usermod -aG docker $USER

4.3 Unpack and install DCT
Once Docker and Docker Compose are installed, DCT can be installed. Begin by downloading the latest version of
the tarball from the Delphix Download site5. Next, transfer the file to the Linux machine where Docker is installed.
Run the following commands to extract the containers and load them into Docker:

tar -xzf delphix-dct*.tar.gz
for image in *.tar; do sudo docker load --input $image; done

4.4 Run DCT
To run DCT, navigate to the location of the extracted docker-compose.yaml file from the tarball and run the
following command. Using -d in the command will start up the application in the background.

sudo docker-compose up -d

Running docker ps should show 9 containers up and running:

sudo docker ps
CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES
75a9df0cae07 delphix-dct-proxy:6.0.0 "/sbin/tini -- /boot…" 7 seconds
ago Up 4 seconds 0.0.0.0:443->8443/tcp delphix-dct-proxy:3.0.0
a23f4fbe0220 delphix-dct-app:6.0.0 "java -jar /opt/delp…" 7 seconds
ago Up 5 seconds delphix-dct-app:6.0.0
96ba8018fa03 delphix-dct-data-library:6.0.0 "/usr/bin/tini -- ./…" 7 seconds
ago Up 5 seconds delphix-dct-data-library:6.0.0
8e5b1e671acc delphix-dct-jobs:6.0.0 "/usr/bin/tini -- ./…" 7 seconds
ago Up 5 seconds delphix-dct-jobs:6.0.0
96049058f025 delphix-dct-data-bookmarks:6.0.0 "/usr/bin/tini -- ./…" 7 seconds
ago Up 5 seconds delphix-dct-data-bookmarks:6.0.0

https://docs.docker.com/engine/install/linux-postinstall/
https://download.delphix.com/folder
https://docs.docker.com/engine/install/linux-postinstall/
https://download.delphix.com/folder

Data Control Tower – Data Control Tower Home

Installation and setup – 13

20d1782cb3bb delphix-dct-ui:6.0.0 "node ./index.js" 7 seconds
ago Up 5 seconds delphix-dct-ui:6.0.0
4fae43c79e8d delphix-dct-virtualization:6.0.0 "/usr/bin/tini -- ./…" 7 seconds
ago Up 5 seconds delphix-dct-virtualization:6.0.0
83d7d661d8a0 delphix-dct-graphql:6.0.0 "/bin/sh -c 'BASE_UR…" 7 seconds
ago Up 6 seconds delphix-dct-graphql:6.0.0
3dded474e28b delphix-dct-postgres:6.0.0 "docker-entrypoint.s…" 7 seconds
ago Up 6 seconds 5432/tcp delphix-dct-postgres:6.0.0

Data Control Tower – Data Control Tower Home

6 https://docs.docker.com/storage/bind-mounts/

Custom configuration – 14

5 Custom configuration
Docker Compose should only be used to deploy DCT in an evaluation/testing capacity.

5.1 Introduction
DCT was designed for users to configure Delphix applications in a way that would meet their security requirements,
which handled with a custom configuration. This article provides background information on performing custom
configurations, which are referenced throughout DCT articles and sections.

5.2 Bind mounts
Configuration of DCT is achieved through a combination of API calls and the use of Docker bind mounts6. A bind
mount is a directory or file on the host machine that will be mounted inside the container. Changes made to the
files on the host machine will be reflected inside the container. It does not matter where the files live on the host
machine, but the files must be mounted to specific locations inside the container so that the application can find
them.

The DCT and proxy containers can both be configured via separate bind mounted directories. Each container
requires all configuration files to be mounted to the /etc/config directory inside the container. Therefore, it is
recommended to create a directory for each container on the host machine to store all of the configuration files and
mount them to /etc/config . This is done by editing the docker-compose.yaml . Under proxy services,
add a volumes section if one does not already exist; this is used to mount the configuration directory on the host to
/etc/config . For example, if /my/proxy/config is the directory on the host that contains the

configuration files, then the relevant part of the compose file would look like this:

services:
 proxy:
 volumes:
 - /my/proxy/config:/etc/config

To change the configuration of the DCT container, make a similar change under its service section, the only
difference being the directory on the host. After making this change, the application will need to be stopped and
restarted.

The structure of /my/proxy/config will need to match the required layout in /etc/config . When each
container starts, it will create default versions of each file and place them in the expected location. It is highly
recommended to start from the default version of these files. For example, if /my/proxy/config is the bind
mount directory on the host, it could be populated with all the default configuration files by running the following
commands.

First, create an nginx directory inside /my/proxy/config on the host.

cd /my/proxy/config
mkdir nginx

https://docs.docker.com/storage/bind-mounts/
https://docs.docker.com/storage/bind-mounts/

Data Control Tower – Data Control Tower Home

Custom configuration – 15

Find the id of the proxy container with docker ps. Look for the container with a delphix-dct-proxy image name. To
determine the user and group ownership for any configuration files, start the containers and open a shell to the
relevant one (nginx in this example), then examine the current user/group IDs associated with the files.

$ docker ps

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES
ac343412492a delphix-dct-proxy:3.0.0 "/bootstrap.sh" 8 minutes ago Up
8 minutes 0.0.0.0:443->443/tcp, :::443->443/tcp dct-packaged_proxy_1

In the above example, ac343412492a is the id. Run the following command to copy the default files to the bind
mount.

docker cp <container id>:/etc/config/nginx /my/proxy/config/nginx

One can always go back to the original configuration by removing the bind-mount and restarting the container or
using docker cp as in the previous example to overwrite the custom files with the default versions.

Data Control Tower – Data Control Tower Home

7 https://openresty.org/en
8 https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Authorization
9 https://portal.document360.io/#replace-https-certificate-for-apigw

Authentication – 16

6 Authentication

6.1 Introduction
DCT uses Nginx /OpenResty7as an HTTP server and a reverse proxy for the application. Using the default
configuration, all connections to DCT are over HTTPS and require the user to authenticate. There are two supported
methods for authentication; API keys and OpenID Connect. The Nginx/OpenResty configuration files can be edited
via /etc/config bind mounts for the proxy container to customize the HTTP server and change options such as
TLS versions.

6.2 API Keys
API keys are the default method to authenticate with DCT. This is done by including the key in the HTTP
Authorization request header8with type apk. A cURL example using an example key of
1.0p9PMkZO4Hgy0ezwjhX0Fi4lEKrD4pflejgqjd0pfKtywlSWR9G0fIaWajuKcBT3 would appear as:

curl --header 'Authorization: apk
1.0p9PMkZO4Hgy0ezwjhX0Fi4lEKrD4pflejgqjd0pfKtywlSWR9G0fIaWajuKcBT3'

cURL (like web browsers and other HTTP clients) will not connect to DCT over HTTPS unless a valid TLS certificate
has been configured for the Nginx server. If you haven't performed this configuration step9 yet, and understand the
risk, you may disable the check in the HTTP client. For instance this can done with cURL using the --insecure flag.

6.2.1 Bootstrap First API Key
There is a special process to bootstrap the creation of the first API key. This first API key should only be used to
create another key and then promptly deleted, since the bootstrap API will appear in the logs. T his process can be
repeated as many times as needed, for example, in a case where existing API keys are lost or have been deleted. It
also means that the Linux users with permissions to edit the docker-compose file implicitly have the ability to get
an API key at any time. There is no mechanism to lock this down after the first bootstrap key is created.

Begin by stopping the application with the following command:

sudo docker - compose stop

Once the application is stopped, edit the docker-compose.yaml file and modify the following lines to the DCT
section, to set the API_KEY_CREATE to the string value "true" :

services:
 gateway:
 environment:

https://openresty.org/en
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Authorization
https://portal.document360.io/#replace-https-certificate-for-apigw
https://openresty.org/en
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Authorization
https://portal.document360.io/#replace-https-certificate-for-apigw

Data Control Tower – Data Control Tower Home

Authentication – 17

 API_KEY_CREATE: "true"

Start DCT again with sudo docker-compose up . You will see the following output in the logs for the app
container (the key will be different from this example):

NEWLY GENERATED API KEY: 1.0p9PMkZO4Hgy0ezwjhX0Fi4lEKrD4pflejgqjd0pfKtywlSWR9G0fIaWaj
uKcBT3

Copy the API Key and shut down the DCT app. The API key can now be used to authenticate with DCT. Remember
that the API Key value must be prefixed with apk. An example cURL command with the above API Key appears as
follows:

curl --header 'Authorization: apk
1.0p9PMkZO4Hgy0ezwjhX0Fi4lEKrD4pflejgqjd0pfKtywlSWR9G0fIaWajuKcBT3'

Edit the docker-compose.yaml file to set the API_KEY_CREATE environment variable value back to "false" and
restart DCT again with sudo docker-compose up -d .

6.2.2 Create and manage API Keys
The initial API key created should be used to create a new admin secure key. This is done by creating a new Api
Client entity and setting the generate_api_key. The " name" attribute should be the desired name to uniquely
identify the user of this key.

curl --location --request POST 'https://<hostname>/v2/management/api-clients' \
--header 'Content-Type: application/json' \
--header 'Accept: application/json' \
--header 'Authorization: apk
1.0p9PMkZO4Hgy0ezwjhX0Fi4lEKrD4pflejgqjd0pfKtywlSWR9G0fIaWajuKcBT3' \
--data-raw '{
 "name": "secure-key",
 "generate_api_key": true
}'

A response should be received similar to the lines below:

{
 "api_key_id": 5,
 "token": "5.vCfC0MnpySYZLshuxap2aZ7xqBKAnQvV7hFnobe7xuNlHS9AF2NQnV9XXw4UyET6"
}

Now that the new and secure API key is created, the old one must be deleted for security reasons since the key
appeared in the logs. To do this make the following request:

Data Control Tower – Data Control Tower Home

10 https://openid.net/specs/openid-connect-discovery-1_0.html
11 https://portal.document360.io/dct-2-0-0/docs/dct-2-0-0-0-custom-configuration#bind-mounts

Authentication – 18

curl --location --request DELETE 'https://<hostname>/v2/management/api-clients/<id>'
 \
--header 'Content-Type: application/json' \
--header 'Accept: application/json' \
--header 'Authorization: apk
5.vCfC0MnpySYZLshuxap2aZ7xqBKAnQvV7hFnobe7xuNlHS9AF2NQnV9XXw4UyET6'

The id referenced above is the numeric id of the API client. It is the integer before the period in the token. For
example, the id of 1.0p9PMkZO4Hgy0ezwjhX0Fi4lEKrD4pflejgqjd0pfKtywlSWR9G0fIaWajuKcBT3 is 1.

Finally, to list all of the current API clients, make the following request:

curl --location --request GET 'https://<hostname>/v2/management/api-clients/' \
--header 'Content-Type: application/json' \
--header 'Accept: application/json' \
--header 'Authorization: apk <your API key>'

6.3 OAuth 2.0

6.3.1 Enable OpenID connect
DCT supports OAuth2 authentication via the OpenID Connect Discovery10 specification. To add support for OAuth
2.0, first configure Nginx to communicate with your OAuth2 server: a bind mount11 must be used . The file needs to
be named default.conf and appear at config/nginx/conf.d/default.conf related to the root of the
bind mounted directory. See the bind mount section about how to use docker cp to begin with the default version
of the file.

There are three important sections of the file that need to be updated. First, the open_id_connect_enabled
variable must be set to true and API keys need to be disabled like so:

local api_keys_enabled = false
local open_id_connect_enabled = true

The other two important configuration options are the discovery URL of the OAuth2 server and the specific attribute
names of the JWT, to provide a unique ID and name for the user.

-- OpenID Connect implementation
if open_id_connect_enabled then
 local opts = {
 -- Replace the discovery URL with the discovery endpoint of your own OAuth2
server.
 discovery = "https://delphix.okta.com/oauth2/default/.well-known/oauth-
authorization-server",

https://openid.net/specs/openid-connect-discovery-1_0.html
https://portal.document360.io/dct-2-0-0/docs/dct-2-0-0-0-custom-configuration#bind-mounts
https://openid.net/specs/openid-connect-discovery-1_0.html
https://portal.document360.io/dct-2-0-0/docs/dct-2-0-0-0-custom-configuration#bind-mounts

Data Control Tower – Data Control Tower Home

Authentication – 19

 ssl_verify = "yes",
 accept_unsupported_alg = false,
 accept_none_alg = false,
 redirect_uri = "",
 }

 local jwt, err, token = require("resty.openidc").bearer_jwt_verify(opts)
 if err then
 ngx.header["X-jwt-error"] = err
 ngx.status = 401
 ngx.log(ngx.ERR, "Invalid token: " .. err)
 ngx.exit(ngx.HTTP_UNAUTHORIZED)
 return
 end

 -- Replace "sub" with the attribute which is meant to be used
 -- as client_id or client_name in the JWT.
 ngx.var.client_id = jwt.sub
 ngx.var.client_name = jwt.sub

end

Once requests are authenticated, they must be matched with an existing API client in DCT. To do so, one of the
claims of the JWT (Json Web Token) must correspond to the client_id of an API client. For instance, imagine
someone is using a JWT with a sub claim with value abc123 and the configuration above, which extracts the sub
claim out of the JWT and sets it as client_id . We can create a corresponding admin API client with the following
request:

curl -k --location --request POST 'https://<hostname>/v2/management/api-clients' \
--header 'Content-Type: application/json' \
--header 'Accept: application/json' \
--header 'Authorization: apk
1.0p9PMkZO4Hgy0ezwjhX0Fi4lEKrD4pflejgqjd0pfKtywlSWR9G0fIaWajuKcBT3' \
--data-raw '{
 "name": "oauth2-test-api-client",
 "api_client_id": "abc123",
 "generate_api_key": false
}'

Set the name to a logical name corresponding to the application or person using the JWT. is_admin denotes
whether this API client has admin access to DCT. api_client_id must be set to the exact string value found in the JWT
claim extracted in the Nginx config above. generate_api_key is disabled in this example as the API client will use
exclusively OAuth2 (JWT) to authenticate and not API keys.

Data Control Tower – Data Control Tower Home

12 https://portal.document360.io/dct-2-0-0/docs/dct-2-0-0-0-custom-configuration#bind-mounts
13 https://docs.docker.com/engine/reference/commandline/cp

Authentication – 20

6.4 Replace HTTPS Certificate for APIGW
By default to enable HTTPS, DCT creates a unique self-signed certificate when starting up for the first time. To
replace this certificate and private key, use a bind mount12. The configuration needs to be bind mounted to a /
etc/config/nginx/ssl directory inside the container. The default location for the configuration is /etc/

config/nginx/ssl/ssl.conf and therefore should be placed in nginx/ssl/ssl.conf - inside the

configuration directory on the host. The default configuration can be retrieved by using docker cp13to copy /etc/
config/nginx/ssl/ssl.conf out of the proxy container and used as a starting point.

To replace the certificate and corresponding private key used by Nginx, place the updated certificate at nginx/

ssl/nginx.crt and the private key at nginx/ssl/nginx.key inside the bind mounted directory on the
host. Doing this could require the assistance of someone from your security or IT departments. A new key pair
(public and private key) will need to be created, in addition to a certificate signing request (CSR) for that key pair. IT
should be able to determine the correct certificate authority (CA) to sign this CSR and produce the new certificate.
The common name of the certificate should match the fully qualified-domain name (FQDN) of the host as well
include the FQDN as a Subject Alternative Name (SAN). The supported versions of TLS can be changed by altering
the ssl_protocols line and the list of ciphers by altering the ssl_ciphers line. After this is done, restart DCT
application with docker-compose.

https://portal.document360.io/dct-2-0-0/docs/dct-2-0-0-0-custom-configuration#bind-mounts
https://docs.docker.com/engine/reference/commandline/cp
https://portal.document360.io/dct-2-0-0/docs/dct-2-0-0-0-custom-configuration#bind-mounts
https://docs.docker.com/engine/reference/commandline/cp

Data Control Tower – Data Control Tower Home

Engines: connecting/authenticating – 21

7 Engines: connecting/authenticating

7.1 Introduction
After DCT Authentication is complete, the HTTPS should be securely configured on DCT and able to be
authenticated against. The next step is to register an engine with DCT so that it can fetch results. DCT connects to
all engines over HTTPS, thus some configurations might be required to ensure it can communicate successfully.

7.2 Truststore for HTTPS
If the CA certificate that signed the engine's HTTPS certificate is not a trusted root CA certificate present in the JDK,
then custom CA certificates can be provided to DCT. If these certificates are not provided, a secure HTTPS
connection cannot be established and registering the engine will fail. The insecure_ssl engine registration
parameter can be used to bypass the check, however, this should not be used unless the risks are understood.

Get the public certificate of the CA that signed the engine’s HTTPS certificate in PEM format. IT team help may be
required to get the correct certificates. Base64 encode the certificate with:

cat mycertfile.pem | base64 -w 0

Copy the Base64 encoded value from the previous step and configure in values.yaml file under
truststoreCertificates section. e.g. section will look like this:

truststoreCertificates:
<certificate_name>.crt: <base64 encode certificate string value in single line>

<certificate_name> can be any logically valid string value for e.g. “engine”.

All the certificates configured in truststoreCertificates section will be read and included in the trustStore which
would be then used for SSL/TLS communication between DCT and Delphix Engine.

7.3 Authentication with engine
All authentication with the Delphix Engine is done with the username and password of a domain admin engine user.
There are two methods of storing these credentials with DCT. They can either be stored and encrypted on DCT itself
or retrieved from a password vault. We recommend fetching the credentials from a vault. Currently only the
HashiCorp vault is supported.

7.4 HashiCorp vault
There are two high-level steps to configuring a HashiCorp vault. The first is to set up authentication with the vault
and register the vault. The second is to tell DCT how to get the specific engine credentials needed from that
registered vault. A single vault can be used for multiple different Delphix Engines.

Data Control Tower – Data Control Tower Home

14 https://www.vaultproject.io/docs/auth/token
15 https://www.vaultproject.io/docs/auth/approle
16 https://www.vaultproject.io/docs/auth/cert
17 https://www.vaultproject.io/docs/commands

Engines: connecting/authenticating – 22

7.4.1 Vault authentication and registration
First, DCT needs to be able to authenticate with the vault. DCT supports the Token14, AppRole15, and TLS
Certificates16 authentication methods. This is done by passing a command to the HashiCorp CLI17. It is
recommended to first ensure that successful authentication is done and one can retrieve the credentials with the
HashiCorp CLI directly to ensure the correct commands are passed to DCT.

Adding a vault to DCT is done through API calls to the /v2/management/vaults/hashicorp endpoint. All
authentication methods requires the location of the vault is provided through the env_variables property in the
POST body like so:

"env_variables": {
 "VAULT_ADDR": "https://10.119.132.40:8200"
 }

7.4.2 Token
To use the token authentication method, this needs to be included as part of the env_variables field. The full
example to register the vault would appear as:

curl --location --request POST 'https://<hostname>/v2/management/vaults/hashicorp' \
--header 'Content-Type: application/json' \
--header 'Accept: application/json' \
--header 'Authorization: apk <your API key>' \
--data-raw '{
 "env_variables": {
 "VAULT_TOKEN": "<your token>"
 "VAULT_ADDR": "https://10.119.132.40:8200"
 }
}'

A response should be received similar to the lines below:

{
 "id": 2,
 "env_variables": {
 "VAULT_TOKEN": "<your token>"
 "VAULT_ADDR": "https://10.119.132.40:8200"
 }
}

Note the id of the vault, this will be needed in the next step to register the engine.

https://www.vaultproject.io/docs/auth/token
https://www.vaultproject.io/docs/auth/approle
https://www.vaultproject.io/docs/auth/cert
https://www.vaultproject.io/docs/commands
https://www.vaultproject.io/docs/auth/token
https://www.vaultproject.io/docs/auth/approle
https://www.vaultproject.io/docs/auth/cert
https://www.vaultproject.io/docs/commands

Data Control Tower – Data Control Tower Home

Engines: connecting/authenticating – 23

7.4.3 AppRole
To use the AppRole authentication method, this needs to be included as part the login_command_args field, as
shown below.

"login_command_args":
 ["write", "auth/approle/login", "role_id=1", "secret_id=123"]

The full example to register the vault would appear as:

curl --location --request POST 'https://<hostname>/v2/management/vaults/hashicorp' \
--header 'Content-Type: application/json' \
--header 'Accept: application/json' \
--header 'Authorization: apk <your API key>' \
--data-raw '{
 "env_variables": {
 "VAULT_ADDR": "https://10.119.132.40:8200"
 },
 "login_command_args":
 ["write", "auth/approle/login", "role_id=1", "secret_id=123"]
}'

 A response should be received similar to the lines below:

{
 "id": 2,
 "env_variables": {
 "VAULT_TOKEN": "<your token>"
 "VAULT_ADDR": "https://10.119.132.40:8200"
 }
}

7.5 TLS certificates
The configuration of mutual TLS authentication requires an additional step. This feature currently is NOT supported
for Kubernetes deployment of DCT. This will be covered in later releases.

7.5.1 Retrieving engine credentials
Once DCT can authenticate with the vault, it needs to know how to fetch the relevant engine credentials. When
registering an engine, the user will need to provide the HashiCorp CLI commands through the
hashicorp_vault_username_command_args and hashicorp_vault_password_command_args

parameters.

The relevant part of the engine registration payload will look like the following:

Data Control Tower – Data Control Tower Home

Engines: connecting/authenticating – 24

'{
 "hashicorp_vault_id": 1
 "hashicorp_vault_username_command_args": ["kv", "get", "-field=username", "kv-
v2/delphix-engine-secrets/engineUser"]
,
 "hashicorp_vault_password_command_args": ["kv", "get", "-field=password", "kv-
v2/delphix-engine-secrets/engineUser"]
}'

The hashicorp_vault_id will be the ID that was returned as part of the previous step. Note that the exact paths to
fetch the username and password will vary depending on the exact configuration of the vault.

Data Control Tower – Data Control Tower Home

18 https://docs.docker.com/storage/volumes/#backup-restore-or-migrate-data-volumes

Backup DCT – 25

8 Backup DCT
This article discusses how to backup DCT. The data that needs to be backed up is the Docker volumes used by the
DCT container, gwdatabase container, and the configuration directories on the host that are bind mounted to the
containers.

The Docker volumes named orbital-api-gateway_gateway-data and orbital-api-gateway_gwdatabase-data
should be backed up to prevent data loss. This Docker article18 explains how to backup a data volume.

The bind mount directories containing the configuration files are standard directories that can be backed up as
desired. A simple approach would be to create a tar file of the contents. If /my/config is the bind mount directory on
the host, then this can be done with the following command: tar -czf gateway-backup.tgz /my/

config

https://docs.docker.com/storage/volumes/#backup-restore-or-migrate-data-volumes
https://docs.docker.com/storage/volumes/#backup-restore-or-migrate-data-volumes

Data Control Tower – Data Control Tower Home

19 https://docs.docker.com/config/containers/logging
20 https://docs.docker.com/config/containers/logging/configure
21 https://docs.docker.com/compose/compose-file/compose-file-v3/#logging

DCT Logs – 26

9 DCT Logs
DCT leverages the Docker logging19 infrastructure. All containers log to stdout and stderr so that their logs are
processed by Docker. Docker supports logging drivers for a variety of tools such as fluentd, Amazon CloudWatch,
and Splunk to name a few. See docker documentation here20 on how to configure them. These changes will need to
be made to the docker-composee.yaml file. This link21 explains how to alter the compose file to adjust the logging
driver. For example, if you want to use syslog for the proxy container then it would look like this:

services:
 proxy:
 logging:
 driver: syslog
 options:
 syslog-address: "tcp://192.123.1.23:123"

https://docs.docker.com/config/containers/logging
https://docs.docker.com/config/containers/logging/configure
https://docs.docker.com/compose/compose-file/compose-file-v3/#logging
https://docs.docker.com/config/containers/logging
https://docs.docker.com/config/containers/logging/configure
https://docs.docker.com/compose/compose-file/compose-file-v3/#logging

Data Control Tower – Data Control Tower Home

22 http://gateway.example.com/
23 https://pypi.org/project/delphix-dct-api/
24 https://pkg.go.dev/github.com/delphix/dct-sdk-go

Developer resources – 27

10 Developer resources

10.1 API requests and reporting

10.1.1 Introduction
This article showcases example requests to the various data APIs supported by DCT.

DCT provides interactive API documentation that allows users to experiment with the APIs in their web browser.
The interactive API documentation can be accessed by entering the hostname for DCT and the /api path into a
browser's address bar. For example, if DCT is running on host gateway.example.com22, then enter https://
gateway.example.com/api into the browser's address bar.

To simplify development, Python and Go programming libraries are available. The Python bindings can be found
on PyPi here23. The latest version can be installed with the following command:

pip install delphix-dct

The Go bindings can be found on go.dev here24.

10.1.2 Engines
This section showcases some examples of querying the Engines endpoint for information about connected Delphix
Virtualization Engines. These examples leverage the generated Python bindings:

import delphix.api.gateway
import delphix.api.gateway.configuration
import delphix.api.gateway.api.management_api
cfg = delphix.api.gateway.configuration.Configuration()
cfg.host = "https://localhost/v2"

For example purposes

cfg.verify_ssl = False

Replace the string with your own API key

cfg.api_key['ApiKeyAuth'] = 'apk 3.tEd4DXFce'
api_client = delphix.api.gateway.ApiClient(configuration=cfg)
engines_api = delphix.api.gateway.api.management_api.ManagementApi(api_client)
print(engines_api.get_registered_engines())

The result should appear similar to the following:

http://gateway.example.com/
https://pypi.org/project/delphix-dct-api/
https://pkg.go.dev/github.com/delphix/dct-sdk-go
http://gateway.example.com/
https://gateway.example.com/api
https://pypi.org/project/delphix-dct-api/
https://pkg.go.dev/github.com/delphix/dct-sdk-go

Data Control Tower – Data Control Tower Home

Developer resources – 28

{'items': [{'connection_status': 'ONLINE',
 'cpu_core_count': 2,
 'data_storage_capacity': 23404216320,
 'data_storage_used': 11589626880,
 'hostname': 'avm.delphix.com',
 'id': 1,
 'insecure_ssl': True,
 'memory_size': 8589934592,
 'name': 'vmname',
 'password': '******',
 'status': 'CREATED',
 'tags': [],
 'type': 'UNSET',
 'unsafe_ssl_hostname_check': False,
 'username': 'admin',
 'uuid': 'ec2fbfea-928b-07f8-94c4-29fea614624f',
 'version': '6.1.0.0'}]}

10.2 API references
To access the API list for DCT version 2.2.0, click the link below and the .html file with the API content will download.

DCT v2.0.0 API.html

(see page 28)

	What is Data Control Tower (DCT)?
	DCT concepts
	Introduction
	Concepts
	Virtual Database (VDB) groups
	Comparing Self-Service containers to VDB groups
	Bookmarks
	Jobs
	Tags
	Tag-based filtering

	Nuances
	Stateful APIs
	Local data availability
	Engine-to-DCT API mapping
	Local references to global UUIDs
	Environment representations
	Supported data sources/configurations
	Process feedback

	Supported versions
	Installation and setup
	Hardware requirements
	Installation requirements (Docker Compose)
	Running Docker as non-root (optional)

	Unpack and install DCT
	Run DCT

	Custom configuration
	Introduction
	Bind mounts

	Authentication
	Introduction
	API Keys
	Bootstrap First API Key
	Create and manage API Keys

	OAuth 2.0
	Enable OpenID connect

	Replace HTTPS Certificate for APIGW

	Engines: connecting/authenticating
	Introduction
	Truststore for HTTPS
	Authentication with engine
	HashiCorp vault
	Vault authentication and registration
	Token
	AppRole

	TLS certificates
	Retrieving engine credentials

	Backup DCT
	DCT Logs
	Developer resources
	API requests and reporting
	Introduction
	Engines

	API references

